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Abstract 

Background Rice is a major contributor to anthropogenic greenhouse gas (GHG) emissions, primarily methane, 
and at the same time will be negatively impacted by  regional climate changes. Identifying rice management inter-
ventions to reduce methane emissions while improving productivity is, therefore, critical for climate change mitiga-
tion, adaptation, and food security. However, it can be challenging to conduct multivariate assessments of rice inter-
ventions in the field owing to the intensiveness of data collection and/or the challenges in testing long-term changes 
in meteorological and climate conditions. Process-based modeling, evaluated against site-based data, provides 
an entry point for evaluating the impacts of climate change on rice systems and assessing the impacts, co-benefits, 
and trade-offs of interventions under historical and future climate conditions.

Methods We leverage existing site-based management data to model combined rice yields, methane emis-
sions, and water productivity using a suite of process-based coupled crop-soil model experiments for 83 growing 
sites across the Red River Delta, Vietnam. We test three rice management interventions with our coupled crop-soil 
model, characterized by Alternate Wetting and Drying (AWD) water management and other principles representing 
the System of Rice Intensification (SRI). Our simulations are forced with historical as well as future climate condi-
tions, represented by five Earth System Models for a high-emission climate scenario centered on the year 2050. We 
evaluate the efficacy of these interventions for combined climate change mitigation and adaptation under historical 
and future climate change.

Results Two SRI interventions significantly increased yields (one by over 50%) under historical climate conditions 
while also reducing (or not increasing) methane emissions. These interventions also increase yields under future 
climate conditions relative to baseline management practices, although climate change decreases absolute yields 
across all management practices. Generally, where yield improved, so did crop water-use efficiency. However, impacts 
on methane emissions were mixed across the sites under future climate conditions. Two of the interventions resulted 
in increased methane emissions, depending on the baseline management point of comparison. Nevertheless, one 
intervention reduced (or did not significantly increase) methane under both historical and future climate conditions 
and relative to all baseline management systems, although there was considerable variation across five selected 
climate models.

Conclusions SRI management principles combined with high-yielding varieties, implemented for site-specific 
conditions, can serve climate change adaptation and mitigation goals, although the magnitude of future climate 

*Correspondence:
Sonali Shukla McDermid
sps246@nyu.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43170-024-00308-0&domain=pdf
http://orcid.org/0000-0002-4244-772X


Page 2 of 19Li et al. CABI Agriculture and Bioscience           (2024) 5:109 

changes, particularly warming, may reduce the efficacy of these interventions with respect to methane reductions. 
Future work should better bracket important sensitivities of coupled crop-soil models and disentangle which man-
agement and climate factors drive the responses shown. Furthermore, future analyses that integrate these findings 
into socio-economic assessment can better inform if and how SRI/AWD can potentially benefit farmer livelihoods 
now and in the future, which will be critical to the adoption and scaling of these management principles.

Keywords Climate mitigation, Climate adaptation, Rice, Vietnam, Trade-offs, Water, Greenhouse gasses, Soil carbon

Background
Rice directly feeds ~ 3 billion people and is critical to 
global food security, farmer livelihoods, and national 
agricultural economies (Fukagawa and Ziska 2019; 
Muthayya et  al. 2014). Climate change is expected to 
reduce rice yields globally, by some estimates 10% or 
more (Peng et  al. 2004; Hasegawa et  al. 2021), primar-
ily through increases in temperature, reduced and/or 
highly variable water availability, and via a host of other 
climate change-mediated changes (e.g. pests and dis-
eases) to  agroecosystems (Yuen et al. 2021). While some 
of these losses may be partly offset by  CO2 fertilization 
effects (Fukagawa and Ziska 2019; Muthayya et al. 2014; 
Hasegawa et al. 2018; Jägermeyr et al. 2021; Toreti et al. 
2020; Deryng et  al. 2016), emerging evidence suggests 
that higher  CO2 concentrations may also reduce the con-
centrations of important nutrients, such as zinc and iron, 
in consumed rice (Zhu et al. 2018). There is thus a need 
to identify regional, context-specific interventions that 
can facilitate rice-based farming systems’ adaptation to 
climate change.

At the same time, rice is also a major contributor to 
climate (and environmental) change, primarily by way 
of methane emissions that result from the anaerobic 
conditions created by paddy flood irrigation (Carlson 
et  al. 2016; McDermid et  al. 2020), practiced in part to 
reduce weed pressure. Rice contributes about 10% and 
2% of agricultural and total anthropogenic global green-
house gas (GHG) emissions, respectively,   and 8-12% of 
global methane emissions  (Saunois et  al. 2020; Crippa 
et al. 2021; Tubiello et al. 2021).  Methane is ~ 21 × more 
powerful than  CO2 on a 100-year timescale, and it is crit-
ical to reduce methane emissions to meet urgent, high-
ambition global climate change mitigation targets  (IPCC 
2018; Masson-Delmotte et al. 2021). Therefore, alongside 
climate change adaptation, rice farming practices and 
interventions that also mitigate methane (as well as other 
GHG) emissions are in increasing demand (Yuan et  al. 
2021).

Among the range of interventions currently being 
explored, alternative water management—such as Alter-
nate Wetting and Drying (AWD) in which the rice paddy 
is irrigated and then allowed to dry to a certain depth 
before irrigating again (Kosmowski et al. 2023)—has been 

identified as a means of mitigating methane  (CH4 herein) 
emissions from rice production (LaHue et al. 2016; Lam-
payan et al. 2015; Nelson et al. 2015; Carrijo et al. 2017; 
Setyanto et  al. 2018). Furthermore, AWD and similar 
irrigation practices may help conserve precious fresh-
water resources in water-scarce regions for future use as 
warming trends continue (Silalertruksa et al. 2017). Many 
countries now list water management in rice systems, 
including AWD, as part of the Nationally Determined 
Contributions (2020–2022) for either climate change 
mitigation, adaptation, or both. The government of Viet-
nam, in particular, has emphasized AWD as part of their 
climate change mitigation strategy, with the intent of 
converting up to 0.5 million hectares of rice cultivation 
to AWD by 2030 (Kosmowski et al. 2023), and an over-
all goal of reducing GHG emissions by 8–10% (Narayan 
et al. 2020). As of 2012, rice cultivation contributed ~ 48% 
of Vietnam’s CO2-equivalent emissions (Narayan et  al. 
2020; FAO 2018), and between 2010 and 2019, rice fields 
in Vietnam were estimated to have produced 2634 Gg 
 CH4  yr−1 (Butterbach-Bahl et al. 2022).

AWD, and conservation water management more gen-
erally, can be further coupled with early rice transplant-
ing or direct seeding (LaHue et al. 2016; Jat et al. 2022), 
wider plant spacing, and weed control that promotes 
root stimulation and plant growth. In particular, several 
of these management principles practiced together con-
stitute the System of Rice Intensification (SRI) (Thakur 
et  al. 2016, 2010) which has been reported to improve 
rice productivity and yields and facilitate improved plant 
growth that displays less sensitivity to changing environ-
mental conditions (Thakur et  al. 2016). Moving beyond 
AWD alone, SRI principles [described in full elsewhere, 
e.g. (Thakur et  al. 2016; Uphoff 2023)] also broadly 
include all or a combination of the following: early trans-
planting (or direct-seeding) and reduced plant density to 
allow for optimal plant growth, as well as organic nutri-
ent additions, compost, and minimal reliance on chemi-
cal fertilizers. It is possible that the interactive effects of 
combined principles may contribute to productivity and 
environmental gains beyond changes to one management 
factor alone, highlighting the importance of systems 
approaches to crop (rice) management (Thakur et  al. 
2016; Uphoff 2023, 2003). Additionally, the importance 
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of high yielding varieties and overall resource-use effi-
ciency via improved agronomic techniques may be criti-
cal determinants of rice system sustainability (Yuan et al. 
2021; Tseng et al. 2020).

However, despite reported and potential benefits of 
these alternative production practices, there remain out-
standing uncertainties and challenges to their widespread 
adoption across space and time. Some studies suggest 
that the biggest benefits accrue when multiple man-
agement practices and principles are coupled together 
such as in SRI (Gathorne-Hardy et  al. 2016). However, 
simultaneously implementing many practices can be 
difficult, leading to high variation in practices and pos-
sible rice system environmental or social externali-
ties beyond methane emissions (Gathorne-Hardy et  al. 
2016; Deb 2020; Graf and Oya 2021). SRI has yet to be 
widely adopted across major production zones, the rea-
sons for which remain under active exploration (Thakur 
et al. 2016; Glover 2011a, b; Berkhout et al. 2015). Some 
farmers cycle through SRI adoption and “dis-adoption”, 
perhaps  related partly to labor considerations in some 
regions (Gathorne-Hardy et al. 2016; Graf and Oya 2021). 
The combination of multiple practices also presents chal-
lenges to understanding interactions between techniques 
and/or identifying which dominates the observed rice 
system responses. And while evidence exists to show that 
AWD (and SRI more generally) reduces methane emis-
sions in many domains (Thakur et al. 2016; Uphoff 2023), 
there exists more variability and uncertainty regard-
ing impacts on nitrous oxide emissions and soil carbon 
sequestration between alternative and conventional rice 
production, which may complicate assessments towards 
mitigation goals (Cheng et al. 2022; Kritee et al. 2018).

Process-based crop, soil, and agroecosystem models 
are important tools for climate change impact assessment 
(Rosenzweig et al. 2013), which can help to better explore 
some of the processes  discussed above. However, it can 
be challenging to comprehensively represent all princi-
ples of alternative rice management practices, like SRI, 
in such models. This contributes to some uncertainty on 
how SRI or other alternative rice production practices 
can contribute to climate change adaptation and miti-
gation goals under continued climate change trends (i.e. 
both now and in the future). Nevertheless, developing 
and improving modeling tools to these ends is essential 
because testing the full range of changing climate condi-
tions across multiple related variables and scenarios can 
be extremely challenging (if not impossible for future cli-
mate conditions) in field-based research, owing to physi-
cal and/or economic limitations in collecting a full suite 
of agronomic and agroeconomic data. Nevertheless, 
agricultural stakeholders require more comprehensive 
assessments of alternative rice production practices such 

as SRI, particularly their efficacy in achieving combined 
climate change mitigation and adaptation goals. Such 
assessments should also consider a range of regionally 
relevant co-benefits and trade-offs, e.g. food security, 
water conservation, household livelihoods, and gender 
and labor equity. Additionally, these assessments must 
be conducted for both historical and future climate (and 
socio-economic) conditions to better ascertain the sus-
tainability of alternative management practices like SRI.

The goal of this study is to investigate how differing rice 
management systems, inclusive of AWD and SRI princi-
ples and multiple interacting components, can serve both 
climate mitigation and adaptation goals under present-
day and future climate change by providing meaningful 
environmental (e.g. methane emissions) and biophysical 
(e.g.  crop yields) co-benefits and trade-offs. We specifi-
cally ask and answer the following research questions: (1) 
How do alternative management interventions (defined 
as systems of multiple management components/prin-
ciples) compare to current rice management practices 
regarding yield, water use efficiency, and methane emis-
sions? (2) How do these interventions perform under 
future climate change conditions? (3) How “climate-
smart” are these interventions to increase productivity 
while reducing methane emissions? We answer these 
questions by adapting  a set of climate-crop mode-
ling protocols developed by the Agricultural Model Inter-
comparison and Improvement Project, described below. 
We leverage existing data compiled by the AgResults 
project (AgResults) (Narayan et al. 2020; Mainville et al. 
2023) in the Red River Delta, Vietnam to implement in a 
newly-coupled rice growth-soil process  based modeling 
system, also  developed and deployed by AgResults to 
assess yields alongside methane emissions in this region. 
Our methodological approach, findings, and implications 
are nevertheless relevant to other major rice production 
regions around the globe.

Methods
Description of rice production systems in the Red River 
Delta, Vietnam
We leverage data and information for rice farming sites 
participating in the AgResults Project (https:// agres ults. 
org/) (Narayan et  al. 2020; Mainville et  al. 2023) across 
the Thai Binh province, Red River Delta, Vietnam (Fig. 1) 
(Mainville et al. 2023). Vietnam is an important national 
producer and leading rice exporter globally. Depend-
ing on the year, the Red River Delta comprises ~ 1 mil-
lion hectares of rice cultivation (or < 20% of the national 
total area) (Yuen et al. 2021; Butterbach-Bahl et al. 2022), 
of which ~ 77,000 hectares are situated in Thai Binh 
province (Narayan et  al. 2020; Mainville et  al. 2023). 
The AgResults project was conducted over a four-year 

https://agresults.org/
https://agresults.org/
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(2017–2020) period to assess rice system interventions 
that maintained or boosted productivity while reducing 
greenhouse gas (GHG) emissions using field trials and 
experimental data collection along with new modeling 
approaches (detailed below) (Narayan et al. 2020; Main-
ville et  al. 2023). The data collected during this project 
was used in a process-based model framework (described 
below) to evaluate climate change mitigation and adap-
tation in rice farming systems in response to manage-
ment interventions, including AWD and implementation 
of critical elements of SRI, under historical and future 
climate conditions. We used 83 field trial sites from the 
available data that sampled the regional soil variability, 
shown in Fig. 1.

Model assessment framework and a coupled crop 
growth and soil biogeochemical model for mitigation 
and adaptation assessment
This work builds off the Regional Integrated Assessment 
methodology and model framework developed by the 
Agricultural Model Intercomparison and Improvement 
Project (Fig.  2) (Rosenzweig et  al. 2013, Antle 2021). In 
summary, this model framework links climate informa-
tion (historical and future projection time series) with 

process-based crop models and a  socioeconomic trade-
off analysis model to understand the impacts of climate 
change on agricultural production and socioeconomic 
household conditions, such as livelihood and food secu-
rity. AgMIP methods also closely integrate stakeholder 
engagement to design adaptation options for climate 
change impacts and test them within the model frame-
work for ex-ante adoption and trade-off analysis. This 
framework constitutes a highly systematic means to 
globally standardize the regional evaluation of climate 
mitigation and adaptation benefits and tradeoffs of agro-
ecosystem interventions (Rosenzweig et al. 2013).

This model assessment framework has been applied in 
numerous studies focused on diverse locations (Rosenz-
weig et al. 2013; Antle 2021), and much of the emphasis 
of this prior work has been on climate change adapta-
tion. However, the AgMIP framework has only recently 
been applied to one previous study to evaluate the com-
bined  climate adaptation and mitigation potential of 
agroecosystem management (Homann-Kee Tui et  al. 
2023). Therefore, we leverage this framework to add a 
coupled, process-based rice-soil model that can dynami-
cally and simultaneously simulate rice yields and water 
use alongside methane emissions. We focus here in on 

Fig. 1 Map shows the Red River Delta, Vietnam (red) and (right) the locations of the selected rice fields
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those framework elements associated with biophysical 
system components—climate, crop growth, water use 
and methane production. Nevertheless, this same frame-
work may also be used to eventually consider socioeco-
nomic impacts of both climate change and changes in 
management systems, (Rosenzweig et  al. 2013; Antle 
2021), which we note in our Discussion. In the current 
study, we use just one, previously calibrated crop-soil 
model, given the low availability of point-based models 
that can simulate processes pertinent to both climate 
change mitigation and adaptation.

To quantify  rice growth and productivity, as well as 
soil biogeochemistry and resulting methane  emissions, 
we use the newly-coupled DNDC-ORYZA process-based 
model (Narayan et  al. 2020; Mainville et  al. 2023). In 
summary, DNDC-ORYZA integrates two process-based 
models (see Additional file  1: Fig. SI-1): the DNDC soil 
biogeochemisty model (DNDC 2017; Giltrap et al. 2010; 
Gilhespy et  al. 2014) and the ORYZA rice ecophysi-
ological model (Li et  al. 2017). The DNDC model was 
developed for quantifying soil carbon and nitrogen bio-
chemical dynamics (DNDC 2017; Li et al. 1992), particu-
larly for soil carbon changes and greenhouse gas (GHG) 
emissions (Gilhespy et  al. 2014). It has been evaluated 
and applied in many ecosystems (Giltrap et al. 2010; Haas 
et al. 2013; Dias de Oliveira and Moraes 2017; Dutta et al. 
2016). ORYZA is an ecophysiological model for rice (Li 

et  al. 2017, 2015; Bouman et  al. 2002). It has also been 
evaluated and applied to  the study rice ecosystem pro-
duction in many domains across the globe (Ribas et  al. 
2021; Gao et al. 2021; Yuan et al. 2017; Ling et al. 2021; 
Tan et al. 2022).

To simulate crop growth and soil biogeochemistry, 
DNDC-ORYZA requires the soil physical, chemical, and 
hydraulic properties, information on rice management, 
and  driving weather/climate datasets. To represent AWD 
in the  DNDC-ORYZA irrigation scheme, we manually 
set the wet period in the wet and dry irrigation cycling 
scheme, rather than using a threshold value. Therefore, 
the “dryness” achieved in the drying cycle is site-specific, 
and dependent on the local soil hydraulic properties, 
crop growth, and the weather. The wet and dry cycling 
periods are the same for all sites and given management 
systems (Table 1). The soil physics and chemical informa-
tion, including texture, bulk density, organic carbon and 
nitrogen, and pH, were extracted for each of the 83 sites 
used in this study from the global gridded soil informa-
tion of the International Soil Reference and Information 
Centre (ISRIC) (Bai et al. 1981). The soil hydraulic prop-
erties, including saturated hydraulic conductivity, total 
porosity, and water content at field capacity and wilting 
point, were derived from the soil texture, bulk density, 
and organic matter contents using pedotransfer func-
tions (Nemes et al. 2003).

Fig. 2 AgMIP model intercomparison protocol used in Regional Integrated Assessment framework, adapted from (Rosenzweig et al. 2013; Antle 
2021) to also include combined mitigation and adaptation outcomes. We note that our present study focuses on integrated climate information 
(light blue box) with process-based rice crop soil biogeochemistry model simulations (green box), specifically using DNDC-ORYZA, described 
below. Generally, this framework is intended to be multi-model, whereby multiple models are run in a harmonized way and intercompared for each 
framework component
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DNDC-ORYZA had been previously calibrated and 
validated as part of the AgResults work using experimen-
tal field data (Additional file 1: Fig. SI-2) (Mainville et al. 
2023; AgResults. 2021; Salas 2018). The model calibra-
tion was undertaken with randomly selected data from 
the AgResults dataset, representing high-quality, stand-
ardized data collection procedures covering the 2017 to 
2020 cropping seasons (Narayan et  al. 2020; Mainville 
et al. 2023; AgResults. 2021; Salas 2018). The calibration 
exercise resulted in a (Additional file 1: Fig. SI-2, top row) 
root mean square error (between simulated and meas-
ured values and normalized by the average of measure-
ments) around 15% for rice grain yield and less than 30% 
for GHG emissions. Methane was underpredicted by the 
coupled model (Additional file 1: Fig. SI-2, bottom row) 
for higher methane values. We note that the data qual-
ity for model validation was lower since it was obtained 
through farmer household information, and there is 
likely more variation between farmers and between their 
reported management and what was actually undertaken 
on the field. Furthermore, DNDC-ORYZA was not evalu-
ated on its prediction power on  CO2 and  N2O emissions, 
soil carbon, and water use efficiency because of a lack 
of direct field or experimental site measurements. As a 
result, the predictions on  CO2 and  N2O emissions, soil 
carbon contents, and water productivity contain uncer-
tainties with different cropping management practices 

and climate conditions. Given this, we assume that the 
biases in these values are consistent across forcing condi-
tions, and we present most of our results in terms of rela-
tive (percent or fractional) changes.

Rice management scenarios and simulations
Due to intellectual property policies and restrictions on 
AgResults data access, we summarized the farm manage-
ment information collected via AgResults (Narayan et al. 
2020; Mainville et al. 2023; AgResults. 2021; Salas 2018) 
into six rice management scenarios for the Spring season 
(January-June) and adopted the calibrated and validated 
cultivars for all simulations shown herein (Table 1). The 
six management scenarios included three baseline sce-
narios (hereafter “Base”) that are representative of the 
current regional rice management systems, and include 
several management components/principles (e.g. vari-
ety, water management, nutrient management, etc.) that 
display variation across the region. We also test three 
scenarios of rice management interventions (hereafter 
“INV”) suggested to aid mitigation and adaptation of cli-
mate change per the AgResults project and prior work 
(Narayan et  al. 2020; Mainville et  al. 2023; AgResults. 
2021; Salas 2018) (Table 1). Similar to the Base scenarios, 
the INV scenarios include changes to multiple compo-
nents/principles of the rice management system. Again, 
we note that our primary goal is to evaluate how these 

Table 1 Description of summarized, representative rice management systems evaluated

1 Tillage management was described as tilling numbers (tilling method) before planting + tilling numbers (tilling method) after harvest, for method, 2: ploughing 
slightly, 3: ploughing with disk or chisel (10 cm), and 4: ploughing with moldboard (20 cm)
2 Fertilizer application described as total N, P, or S amount (splits). The “s” was followed for the slow-release fertilizer type
3 Organic fertilizer application in N amount (C:N ratio)
4 Irrigation management: “C” for continuous flooded; “A” for alternative wet and dry management, which includes the wet and dry cycles and drying days in brackets 
such as (4, 5)
a There was no irrigation during the vegetation period, but the field was flooded during the reproductive stage
b The total 81 kg/ha urea N was applied in four splits, where the last two applications were slow-release urea. The similar meanings in urea and ammonium fertilizer 
management in scenario Innovative 3

Rice management system Base1 Base2 Base3 Intervention 1 (INV1) Intervention 2 
(INV2)

Intervention 3 (INV3)

Cultivar DS1 T10 BT7 DS1 LTH31 BC15

Establishment

Seedling age 11 11 11 11 11 11

Transplanting density (#/m2) 135 123 145 60 110 109

Tillage1 2 (4) + 1(3) 2(3) 2(4, 3) 2 (4) + 1(3) 1(3) 1(3)

Fertilizing (kg/ha)

Urea  N2 54.0(3) 54.0(3) 81.0 (2 + 2 s)b 25.6(1)

Ammonium  N2 63.0(2) 63.0(2) 63.0(2) 82.8(4) 83.3(1) 81.1(1 + 2 s)

P2 60.0(2) 60.0(2) 60.0(2) 103.6(4) 90.9(3)

S2 0.6(1)

Organic2 43.5(46) 4.6(70) 47.8(46) 45.7(46) 27.9(86)

Irrigation4 A(2, 5) A(2, 5) A(2, 5) A(5, 6) A(5, 6) A(4, 5)

Pest and disease Complete pest and disease-free
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whole management systems—which were found to be 
the most impactful in the AgResults project—performed 
under long term simulation for both current and future 
climate conditions, which was not attempted in the 
AgResults project.

Each of the six management systems was simulated at 
each of the 83 sites (hereafter, the combination of man-
agement systems simulated across these sites will be 
referred to as “management-sites”) using our modeling 
framework (Fig.  1). Data collection from the AgResults 
project indicate that across the Red River Delta, many 
farmers have adopted a practice of multiple drainage or 
AWD during the major Spring growing season, which 
is of focus for the present work (Kosmowski et al. 2023; 
Narayan et  al. 2020; Mainville et  al. 2023; AgResults. 
2021; Salas 2018). Furthermore, the AgResults project 
adopted multiple drainage as their baseline against which 
to conservatively measure the combined yield, water, 
and GHG benefits of further interventions (AgResults. 
2021). Therefore, for relevance to this regional context, 
the baseline scenarios use different AWD management 
systems while our INV scenarios (Table 1) include addi-
tional SRI practices such as: earlier transplanting, greater 
plant spacing, and altered nutrient applications (Table 1). 
In our Discussion section below, we raise implications of 
this decision to treat AWD as part of baseline conditions.

Our INV scenarios may therefore be considered “vari-
ations of SRI” (Table  1) (Bouman et  al. 2002) and dif-
fer in several major ways from Base management. First, 
INV transplanting densities were substantially reduced, 
with INV1 testing the greatest reduction in transplant-
ing density at less than half of most baseline manage-
ment systems. Second, for INV2 and INV3, the number 
of tills was reduced during the spring season. Third, the 
INV systems tested enhanced the application of organic 
fertilizer and/or increased the proportion of slow-release 
nitrogen fertilizer. Fourth, while the Base systems also use 
AWD, the INV systems increased the number of cycles 
and/or the length of the AWD drying period, leading to 
overall changes in water use (discussed in the results sec-
tion below).

We acknowledge that changes across multiple man-
agement principles can lead to challenges in identifying 
those with the strongest effects. To this end, we under-
take some simple factorial model assessments (Addi-
tional file  1: SI Fig. SI-3) to provide a sense of model 
sensitivity to key management parameters, including 
cultivar choice. In doing so, we find that the choice of 
cultivar based on the management system could poten-
tially impact the results (Additional file  1: SI Fig. SI-4), 
particularly yields and related measures (e.g. water-use 
efficiency). While the variety selection also appears to 
impact methane emissions, the differences between the 

varieties and sites are relatively small. Nevertheless, a 
high-yielding variety appears more efficient when look-
ing at GHG intensity (i.e., GHG emissions per unit of 
output). Future work will determine the importance of 
individual management practices, particularly for inter-
ventions resulting in substantive co-benefits with mini-
mal tradeoffs.

However, this study was intended to test those manage-
ment interventions identified as promising for climate 
mitigation and adaptation, moving beyond AWD in this 
region (AgResults 2021; Final evaluation report: Vietnam 
emissions reduction challenge project final report 2022). 
We therefore focus on an overall assessment of these 
more comprehensive management interventions relevant 
to decision-making at multiple levels. Lastly, we assumed 
no pest/disease or weed pressure in these experiments.

Description of climate data: historical and future climate 
scenarios
Daily climate data for key variables, including maximum 
and minimum temperatures, precipitation, and solar 
radiation, is required for crop and soil model simulations 
(described below). Furthermore, we performed all simu-
lations for 30 continuous rice cropping years to account 
for climate and consequent yield variation. However, 
continuous station data that best represented the geo-
graphic distribution of sites was sparse. We, therefore, 
leveraged the spatially explicit 0.25˚ latitude × longitude 
AgMERRA climate dataset, which has been widely used 
for crop model applications (Ruane et al. 2015a, b).

Before forcing the crop model simulations with 
AgMERRA climate data, we evaluated and removed 
monthly biases using an observational product for one 
co-located (i.e. within the Red River Delta) station. Spe-
cifically, we obtained maximum and minimum tempera-
tures and precipitation, ranging from 1980 to 2010 for 
Phu Lien, Vietnam (20.8˚N, 106.63˚E) from the National 
Oceanic and Atmospheric Administration’s Global Sum-
mary of the Day. Months with the most continuous 
available data were used to evaluate monthly biases in 
the AgMERRA dataset extracted for the exact latitude 
and longitude. These biases were then removed for five 
AgMERRA sites extracted to best represent the distribu-
tion of climate conditions that characterize the 83 rice 
field sites (Additional file 1: Fig. SI-5). These climate data 
represent our “historical” climate forcing for the crop-soil 
model, as discussed in the Results section below.

Future climate scenarios were then constructed using 
established AgMIP procedures (Ruane et  al. 2015a, b; 
Ruane and McDermid 2017), which have also been evalu-
ated in independent studies (Qian et  al. 2021). Figure  3 
shows the distribution of CMIP5 climate models’ sur-
face temperature anomaly vs precipitation anomaly (% 
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change) for the model grid cells overlapping the weather 
station site used for bias correction (described above), 
averaged over the relevant growing season months. 
From this distribution, four “quadrants” of change may 
be defined relative to the distribution’s mean (black dot 
on graph): hotter/wetter, hotter/drier, cooler/wetter, and 
cooler/drier relative to the median value. One model 
was selected for each of these “quadrants” (closest to the 
quadrant mean, colored dots), and in addition the model 
closest to the mean value of the distribution resulting 
in five selected models. Per this method, the five-model 
subset obtained represents the wider distribution of 
modeled climate changes (Ruane et  al. 2015a, b; Ruane 
and McDermid 2017).

The monthly mean anomalies and changes to daily 
variation in the relevant climate variables from five 
climate models: “X” (CNRM-CM5), “K” (HadGEM2-
ES), “J” (HadGEM2-CC), “S” (MRI-CGCM3), and “C” 
(BNU-ESM) (Fig.  3) were then applied to the baseline, 
bias-corrected AgMERRA datasets described above. 
These climate models were selected from the Fifth 
Coupled Model Intercomparison Project (Taylor et  al. 
2012) to represent the distribution of temperature and 

precipitation changes for Representative Concentration 
Pathway 8.5 averaged over 2040–2069 (Fig. 3). The mean 
temperature changes for this period relative to the base-
line climate were 2.09 °C (“C”), 3.19 °C (“J”), 2.80 °C (“K”), 
1.56  °C (“S”), and 1.21  °C (“X”). While this work was 
undertaken before the completion of the new Sixth Cou-
pled Model Intercomparison Project, future work will 
employ the most updated climate scenarios and models. 
Nevertheless, for the present study, this sample of climate 
models represents a reasonably broad range of possible 
future climate conditions that are still within the enve-
lope of projections for updated climate projections and 
allows us to bracket sensitivities and uncertainties in the 
crop and biophysical responses. We also employ different 
atmospheric  CO2 concentrations that the historical cli-
mate experiments is 365.5 ppm for base weather, and the 
future climate experiments use 572.4 ppm.

Experimental modeling design and analysis procedures
To quantify the interactive adaptation and mitigation 
co-benefits and trade-offs, the model simulations were 
designed as complete factor interactions of baseline and 
intervention management systems and climate scenarios. 

Fig. 3 Temperature and precipitation anomalies for 29 different climate models (represented by alphanumeric characters) under RCP8.5 averaged 
for 2040–2069 (i.e. mid-century) conditions. Colors represent “quadrants” that break the distribution of climate changes into cool/wet (green), hot/
wet (yellow), cool/dry (blue), and hot/dry (red) conditions relative to the model distribution mean (black dot). The “middle” area is defined by ± one 
standard deviation of change on each axis. Models close to this median value were circled in purple for the crop model simulations
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The six cropping management scenarios and six cli-
mate scenarios (baseline and five climate model projec-
tions) were performed at each of the 83 sites (Table  2). 
All management-site simulations were performed with 
30-years of continuous weather data and included 60 rice 
cropping seasons (two per year following the regional 
double-cropping system described in “Rice management 
scenarios and simulations” section, Table 1).

In this study, the analyses of co-benefits and trade-offs 
were conducted for a set of model outputs during the 
Spring growing season, including grain yield (kg/ha), the 
total emissions of methane species  (CH4, kg/ha), total 
annual irrigated water consumption (mm), and irrigation 
water use efficiency, presented as the rate of grain yield 
to irrigation water consumption (WUE, kg grain yield/
mm). The 30-year average of these simulated variables at 
each site were then used to produce the analyses below, 
including the site-specific fractional changes between 
baseline management and the three tested interventions.

Quantification of co‑benefits and trade‑offs
In general, we seek to optimize the intervention systems 
such that yield/production is maximized across the region, 
while GHG emissions, particularly  CH4, and nutrient and 
water use are minimized (or made more efficient per unit 
production). Satisfying two (at least) of these requirements 
are considered “co-benefits” while optimizing one at the 
expense of other goals is considered a “trade-off”. In addi-
tion, we also use our model results to compute an adapted 
version of the Climate-Smart Index (CSI) (Arenas-Calle 

et al. 2021). The CSI is intended to aid the assessment of 
climate-smart agricultural interventions by identifying 
agroecosystem variables of key importance in this regard 
(e.g. yield, water use, and GHG emissions) and evaluat-
ing them in aggregate with a normalization from − 1 to 1, 
where “1” indicates the highest level of “climate smartness”. 
In our Results, we present the CSI per baseline manage-
ment-site and mean values across the management-sites 
for future climate, using the modeled water productiv-
ity, (kg grain/m3)—or herein termed water use efficiency 
(WUE)—and methane intensity (CH4I, kg  CH4 / kg grain) 
per the Eqs. 1–3:

where the subscript “s” denotes the specific management-
site, CH4Imin, WUEmin, CH4Imax, and WUEmax are 
all obtained from our complete dataset of model simula-
tions, including all management-sites and scenarios.

The CSI score is then calculated per Eq.  3, and ranges 
from “1” (highest climate-smartness) to “− 1” (lowest cli-
mate smartness)

(1)
CH4In = (CH4Is − CH4Imin) / (CH4Imax − CH4Imin)

(2)
WUEn = (WUEs−WUEmin) / (WUEmax −WUEmin)

(3)CSI = WUEn − CH4In

Table 2 Climate-crop-soil experimental design and description

* Each simulation was performed with 30-years of continuous weather data and one (Spring) cropping season

Climate scenario 
(no. of scenarios)

Management 
SYSTEMS

No. of simulations 
(climate × management × site)

Simulation purpose

Historical (1) Base1 83 Baseline results will serve as a comparison population for the experiment sets 
below

Historical (1) Base2 83 Baseline results will serve as a comparison population for the experiment sets 
below

Historical (1) Base3 83 Baseline results will serve as a comparison population for the experiment sets 
below

Historical (1) INV1 83 Assess impacts of SRI interventions relative to Base under historical climate

Historical (1) INV2 83 Assess impacts of SRI interventions relative to Base under historical climate

Historical (1) INV3 83 Assess impacts of SRI interventions relative to Base under historical climate

Future (5) Base1 415 Impacts of climate change on Base rice systems

Future (5) Base2 415 Impacts of climate change on Base rice systems

Future (5) Base3 415 Impacts of climate change on Base rice systems

Future (5) INV1 415 Interactions between climate change and management interventions for key 
variables

Future (5) INV2 415 Interactions between climate change and management interventions for key 
variables

Future (5) INV3 415 Interactions between climate change and management interventions for key 
variables
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Results
Impact of rice management interventions under historical 
and future climate conditions
Returning to our research questions, we first evaluate 
how the three rice system interventions compared to 
baseline management under historical climate conditions 
for key variables shown in Fig. 4.

All three SRI interventions produce absolute yield val-
ues comparable to or higher  than the baseline manage-
ment systems, with INV2 showing the most substantial 
yield improvements relative to all other management 
systems (Fig.  4a). The methane responses are decidedly 
more mixed: Base1 has the highest methane emissions, 
followed by INV1 (Fig. 4b). While resulting in the high-
est yields, INV2 incurs the least methane emissions, on 
par with the lowest yield system Base2, indicating a sig-
nificant gain in methane intensity for this management 
system. Similarly, INV2 also results in the highest WUE 
relative to all other management systems (which follows 
largely from the substantially higher yields used in the 
WUE calculation) (Fig. 4c).

All three interventions generally increase yields under 
historical climate conditions (Fig.  5a), except for INV1 
relative to Base1. However, there are differences in the 
magnitude and spread of these yield changes, with INV2 

showing substantially and significantly larger fractional 
yield changes than the other interventions. The frac-
tional changes resulting from the interventions are com-
parable for both Base2 and Base3, while overall lower in 
Base1. Relative to the other SRI interventions, INV2 also 
results in overall lower fractional methane changes rela-
tive to each baseline management (Fig.  5b). In the case 
of Base1 and Base3, shows reduced methane emissions 
relative to the baseline. Relative to Base1, we note that all 
three interventions appear to reduce methane, and the 
most substantial decreases result from INV2. This sug-
gests that INV2 presents a possible optimum of enhanc-
ing yields while not significantly increasing methane. This 
is also true of INV2’s fractional change in water use effi-
ciency (a function of yield), which again displays a higher 
increase compared to the other interventions (Fig.  5c). 
Improvements in WUE are also shown for INV3 com-
pared to all baselines, while INV1 shows reduced WUE 
(again relating partly to the yield responses).

We next evaluate the fractional changes between the 
interventions and baseline management under future 
climate change (as described in the Methods) (Figs.  4 
and 5, bottom row). We note here again that each box-
plot shown reflects the distributions of simulated frac-
tional changes across the management sites for all five 

Fig. 4 Boxplots show the absolute value of a yields (kg/ha), b methane emissions (kg/ha), and c WUE (grain yield/mm) 
across the management-sites, inclusive of the three baselines and three SRI interventions during the Spring season. d–f same as (a–c) but for future 
climate, where distributions include the management-sites run for all five climate modeled futures
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climate models for each management system (Fig. 4), and 
for each of the three interventions compared to each of 
the baseline management systems (that is, the fractional 
changes shown are not computed with respect to histori-
cal conditions  but rather the base management system 
indicated simulated for the same climate) (Fig. 5).

Relative to historical climate conditions, future cli-
mate change (as represented by the five chosen climate 
models) results in yield declines across all management 
systems (Fig.  4d). INV2, in particular, displays the larg-
est percentage losses of all the management systems—
a reduction of ~ 30% averaged across sites and climate 
models. The distributions of methane emissions under 
future climate are broadly similar to those of the histori-
cal climate simulations, although for some management 
systems such as Base1 and INV1, the median values are 
significantly higher, though these increases are not sub-
stantial (Fig.  4e). However, WUE does display more 
substantial changes and overall increases across most 
management systems while also displaying larger distri-
butions (i.e. higher variation between management site-
climate model combinations) (Fig. 4f ).

Under future climate conditions, the fractional changes 
of the three interventions are broadly similar to those 
under historical climate conditions, primarily in that 
INV2 results in the largest yield increases across all 
baselines (Fig.  5d) while also mostly reducing methane 
emissions (Fig.  5e) and improving WUE (Fig.  5f ). This 
demonstrates that relative to baseline management, 
INV2 still has the potential to meet mitigation and adap-
tation needs under future climate conditions. INV3 also 
results in higher yields and more modest reductions 
in methane relative to baseline management, although 
methane emissions do increase in comparison to Base2. 
Similar to INV2, INV3 also improves WUE relative to 
all baselines, although more substantial variation exists 
across the sites. Results for INV1 are more mixed, and 
yields are actually relative to Base1 (Fig. 5d), while meth-
ane increases relative to Base2 and Base3 (Fig. 5e). INV1 
WUE (Fig.  5f ) is lower across nearly all sites than all 
baselines. The inclusion of results for each climate model 
partly contributes to a larger spread in each distribution 
relative to those shown in the top row under historical 
climate conditions.

Fig. 5 Boxplots of fractional anomalies between the SRI interventions and baseline management across sites for key variables under historical 
(top row) and future (bottom row) climate conditions. Variables shown are yield (a), CH4 (b), and WUE (c). Black boxplots denote the INV1 response 
(relative to the respective baseline column), green boxplots denote the INV2 response and blue boxplots denote the INV3 response. The bottom 
row variables showing the fractional changes under future climate conditions are ordered the same as the top row, and the boxplot distributions 
also include the management-site responses for each of the five climate models used. A fractional change greater than 1, indicates that the variable 
in question increases and values less than 1, indicate a decrease relative to the respective
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Assessing co‑benefits and trade‑offs of rice interventions 
under historical and future climate conditions
Figure 6 shows a multivariate evaluation of the SRI inter-
ventions’ biophysical trade-offs and co-benefits using 
fractional changes from all the baseline management sys-
tems for methane vs yield (Fig. 6a, b), fractional changes 
in methane vs WUE (Fig.  6c, d), and methane intensity 
vs absolute yield (Fig.  6e, f ). Under historical climate 
conditions, INV2 shows that ~ 83–100% of sites fall in 
the “win–win” quadrant (Fig. 6a, yellow-highlighted plot 
area), depending on the baseline management compari-
son (Table  3), indicating a multi-optimum for increas-
ing yields while reducing methane. Likewise, INV2 also 
shows that most sites display relative methane reductions 
from baseline management while increasing WUE under 
historical climate conditions (Fig.  6c). When compared 
to Base1 or Base3, INV3 also produces win-wins at 100% 
and ~ 80% of sites, respectively (Table  3). In contrast, 
INV1 shows that almost no sites fall into the win–win 
methane vs. yield quadrant, with the exception of ~ 2% 
when compared with Base2.

While overall reductions in methane are needed to 
meet climate targets, it can also be useful to consider 
methane intensity (unit methane/unit yield) in tandem 

with fractional changes in methane. In other words, what 
interventions produce less methane for a given yield? Fig-
ure  6e shows that INV2 has the lowest methane inten-
sity while producing the highest yields, thereby further 
supporting INV2 as among the more optimal combined 
adaptation and mitigation strategies. INV3 similarly pro-
duces higher yields for methane intensities that are on 
par with Base2, although Base2 yields are considerably 
lower. The other two baselines and INV1 display higher 
methane intensities and low-to-moderate yields com-
pared to the other management systems.

Under future climate conditions, ~ 7–100% of the 
INV2 management-sites, depending on the climate 
model and baseline management system (Table 3), still 
fall within the win–win quadrant for methane vs yield 
(Fig. 6b). When considering methane vs WUE (Fig. 6d), 
all the management-systems, including INV2, display 
a substantial spread across the sites resulting in part 
from the varied responses to the climate models pro-
jected futures. Nevertheless, INV2 still shows the most 
robust win–win responses (Table 3) relative to all base-
line management systems. Results for INV1 and INV3 
are more mixed. INV1 does not produce any win-wins 
across Fig. 6b and d, while INV3 shows that ~ 33–100% 

Fig. 6 Trade-offs and co-benefits of SRI interventions. Top row: fractional changes from all the baseline management systems under historical 
climate conditions for methane vs yield (a), fractional changes in methane vs WUE (b), and methane intensity vs absolute yield (c). Bottom row 
is the same as top row but for future climate conditions, where the increased number of points denote results from five (undifferentiated) climate 
models. The yellow areas on each plot show those management-sites that display co-benefits—or “win-wins”—for adaptation and mitigation. 
The values in the legend are the proportion of management-sites that fall in the green, co-benefit area, and ranges for the future climate show 
the maximum and minimum proportion across the five climate models
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of management-sites (again depending on the climate 
model and baseline management) (Table  3) fall in the 
methane vs yield win–win quadrant (Fig.  6b), and 
0–100% of management sites fall in the methane vs 
WUE win–win quadrant (Fig. 6d).

The various management systems display responses 
in methane intensity vs yield (Fig.  6f ) under future 
climate conditions like those under historical climate 
conditions: overall, INV2 shows the highest yields that 
are the least methane intensive. It is also notable that 
many INV2 climate model-site combinations in Fig. 6f 
show methane intensities similar to those under histor-
ical climate conditions. There is more variation owing 
partly to the spread in climate models. However, meth-
ane intensity across the management-sites and climate 
model combinations approximately doubles under 
future climate conditions (Fig.  6f, y-axis). Therefore, 
depending on the future climate conditions (model 
and likely scenarios), these management interventions’ 
efficacy in producing strong adaptation and mitigation 
benefits are more mixed. INV3 exemplifies this: while 
most INV3 climate model-site combinations show 
higher yields than baseline systems, some combinations 
show lower yields and higher methane intensities rela-
tive to Base2 and Base3.

The CSI score (see Methods) in Fig.  7 displays 
another useful, summarized way of assessing biophysi-
cal co-benefits and trade-offs of the different manage-
ment interventions. Under historical climate conditions 
(boxplots), INV2 and INV3 show significant and sub-
stantial increases in the CSI, increasing water produc-
tivity while reducing CH4 intensity. INV2 shows the 
highest CSI values of the three interventions, while 
INV1 shows a CSI distribution across sites akin to 

Base1, among the lowest CSI values, which notably 
both use the same rice variety. We also note that none 
of the baseline management systems display positive 
CSI scores.

The impacts of future climate conditions vary by model 
and by the management system. Overall, for Base1, 
Base2, Base3, and INV1, most climate models show 
improved CSI scores (or no change to minimal declines 
relative to the median across the sites). For INV2 and 
INV3, which had the highest CSI scores under histori-
cal climate conditions, future climate change depresses 
these scores overall. Interestingly, mean CSI scores for 
INV2 under future climate change are similar to those 
for the other management interventions and does not 
increase under future climate change. The primary rea-
son for this are the yield declines between the historical 
and future climate conditions (shown in Fig. 4a, d), which 
drive changes in INV2 CH4I and WP that combine to 
produce lower CSI scores than those of historical climate 
conditions. However, the choice of climate model mat-
ters: climate models K (HadGEM2-ES) and J (HadGEM2-
CC) appear to improve the CSI score substantially across 
most of the management systems as compared to the 
other three models.

Discussion
Mitigation and adaptation under historical and future 
climate conditions
Under historical climate conditions, at least two of the 
SRI-like interventions produce average (across sites) 
yields that are either similar to Base values or higher. 
Furthermore, INV2 and INV3 improve water productiv-
ity compared to the Base systems and INV1. These yield 
gains are the product of multiple changing factors, with 

Table 3 Percent (%) of management-sites that fall into the “win–win” quadrant in Fig. 6

Win–win quadrant Climate scenario Base1 Base2 Base3

INV1 INV2 INV3 INV1 INV2 INV3 INV1 INV2 INV3

CH4 and yield Historical 0 100 100 34 83 24 0 100 81

CH4 and yield ICXF 0 100 100 0 7 0 0 100 55

CH4 and yield IJXF 0 100 100 0 94 0 0 100 33

CH4 and yield IKXF 0 100 100 0 82 0 0 100 54

CH4 and yield ISXF 0 100 100 0 83 0 0 100 65

CH4 and yield IXXF 0 100 100 0 100 0 0 100 92

CH4 and WUE Historical 0 100 100 0 83 0 0 100 81

CH4 and WUE ICXF 0 100 100 0 7 0 0 100 55

CH4 and WUE IJXF 0 100 100 0 94 0 0 100 33

CH4 and WUE IKXF 0 100 100 0 82 0 0 100 54

CH4 and WUE ISXF 0 100 100 0 83 0 0 100 65

CH4 and WUE IXXF 0 100 100 0 100 0 0 99 89
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important contributions from high-yield cultivars and 
enhanced WUE (in the case of INV2 and INV3). These 
modeling experiments consider the average values of key 
variables over a 30-year period, which embeds climate 
extremes and the long-term climate change trend. These 
results suggest that, across most management-site com-
binations, SRI-like interventions could serve as climate 
adaptation options under historical climate conditions. 
Furthermore, there are interventions at these manage-
ment-sites that also reduce methane while increasing 
yields, particularly INV2 or INV3, thereby producing a 
“win–win” for combined climate mitigation and adapta-
tion. The highest yielding INV2 management system also 
had among the lowest methane emissions across sites.

All the baseline management systems already utilized 
AWD (Table 1), reflecting current trends in regional rice 
farming practices (Kosmowski et al. 2023). Therefore, our 
interventions test adaptive changes in AWD implementa-
tion by introducing other management practices, rather 
than compare AWD to conventional flooding. In some 
cases, modifying Base AWD practices can result in more 
water added during AWD wetting cycles and/or fewer or 
shorter drying cycles. Coupled with modified nutrient 

management, the tested water management interven-
tions introduce the possibility of relatively high meth-
ane emissions compared to Base management systems, 
which is exemplified by INV1. Although these water-sav-
ing interventions may not eliminate methane emissions 
across interventions, our results do suggest that taking 
measures to enhance WUE or increase beneficial plant 
water uptake can be one important measure to help facil-
itate climate change mitigation in rice cropping systems.

Under future climate change, the INV2 and INV3 
interventions still produce yield gains from all baseline 
management systems, although yields are reduced over-
all compared to historical climate conditions. The suc-
cess of INV1 is more variable, as it produces yield gains 
under historical and future climate only when compared 
to Base2 and Base3. In general, while the spatial varia-
tion across the sites was low, the different management-
site combinations display more variability in WUE 
under climate change conditions. This larger spread 
relative to historical conditions may partly reflect the 
interaction between climate and plant growth, water 
uptake, the sites’ soil conditions, and choice of climate 
model—that is, model-specific changes in temperature 

Fig. 7 Climate smart index (see Methods). Boxplots show the distribution across management-sites for baseline management and for the three 
interventions. Red plus signs indicate distributional outliers for the boxplots. The overplotted dots signify mean values across the management-sites 
for each of the five climate models (simulating RCP8.5 for 2050 conditions) identified in the Methods and also in the legend. CSI values closer to + 1 
indicate higher rice water productivity and reduced CH4 intensity—or more “climate smart”—while values closer to − 1 indicate less climate smart 
(see Methods for more details)
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and precipitation interact with crop water uptake. Nev-
ertheless, the future climate results suggest that switch-
ing from the baseline management systems to INV2 (or 
switching to INV3 from Base2) may still increase yields 
by a comparable fraction to historical climate conditions 
and/or serve as a methane mitigation option across most 
sites.

Biophysical co‑benefits and trade‑offs of combined 
mitigation and adaptation interventions
Under historical climate conditions, a fraction of mod-
eled sites show potential for simultaneously achieving 
mitigation and adaptation alongside co-benefits for WUE 
and irrigation water use. The way SRI management prin-
ciples are implemented matter greatly for this outcome. 
For the combination of practices comprising INV2, most 
sites can optimize across mitigation, adaptation, and 
other co-benefits (e.g. WUE) depending on which Base 
system is being compared. However, these gains—both 
in magnitude and across sites—are reduced when con-
sidering future climate change, particularly the severity 
of temperature change (given these are irrigated man-
agement systems) can further modulate these results. 
Overall, this results in a lower fraction of modeled inter-
vention management-sites achieving both mitigation and 
adaptation goals simultaneously. Future climate changes 
across most climate models also result in lower CSI 
scores for INV2 and INV3.

Notably, climate change can improve the CSI score for 
management systems that otherwise “underperform” for 
yields and methane emissions compared to INV2 and 
INV3. This result is largely driven by increases in WUE 
(as opposed to reduced methane intensities) for these 
systems, while WUE for INV2 and INV3 displays higher 
variability under future climate change. For some climate 
models, the CSI score for INV2 and INV3 falls within 
the range of the CSI score for the other management 
systems. This makes assess assessing the optimal system 
challenging based on this indicator alone. As such, cau-
tion should be taken when relying on any one metric or 
indicator to assess how effective a particular agricultural 
intervention may be at achieving combined mitigation 
and adaptation goals.

These results highlight important considerations for 
assessing environmental co-benefits and tradeoffs of 
rice management options for climate change mitigation 
and adaptation. Firstly, most rice GHG mitigation strat-
egies focus on reducing methane, the most important 
GHG species in conventionally flooded paddy produc-
tion, via alternative water management like AWD. How-
ever, changing the water management regime can also 
impact plant and soil nutrient cycling in ways that can 
in changes in  N2O and  CO2 emissions. Therefore, the 

choice of aggregate warming index and which GHG spe-
cies are most important from a stakeholder or emissions 
stocktaking perspective can impact the interpretation of 
how well a management system performs and, thus, how 
these are valued in decision-making. In this vein, our 
CSI scores reflect high importance on WUE and overall 
methane intensity. Future work should seek to modify 
this scoring indicator by replacing or augmenting it with 
quantities of specific importance to regional farming sys-
tems (for example, further including SOC measures).

It is further important to note that the choice of climate 
future, in this case, the climate model likely also the mag-
nitude of change in climate variables related to different 
scenarios, matters for these results, particularly concern-
ing methane (or GHG) emissions and crop physiological 
responses (e.g. changes in WUE). These effects are medi-
ated through the modeled interactions between plant and 
soil hydrological and biogeochemical processes, which 
are sensitive to changing temperatures and water. For 
example, alongside changes in water management, higher 
temperature anomalies from climate change contrib-
ute to more methane production in the model via more 
active carbon decomposition and root exudation that 
increases methanogenesis (Additional file  1: Fig. SI-3). 
However, future work would benefit from more system-
atic sensitivity testing and evaluation and comparison 
with field data where available.

Limitations and future work
While our experiments show the potential for SRI-like 
management interventions to achieve climate change 
mitigation and adaptation in rice systems both now and 
in the future, several limitations of our work must be 
addressed and/or considered by future study. First, this 
work was intended to evaluate different combinations of 
management practices as they have been previously iden-
tified, tested, and promoted as part of the AgResults pro-
ject (Narayan et al. 2020; Mainville et al. 2023; AgResults. 
2021; Salas 2018). However, considering all these man-
agement practices simultaneously complicates a rigor-
ous scientific assessment of which management practices 
are most important in driving these responses and the 
mechanistic climate-plant-soil pathways by which they 
are achieved. Understanding which of the management 
changes—particularly water and nutrient management, 
plant density, and cultivar choice—are the most impor-
tant levers to achieve mitigation and adaptation can 
be important for decision-making from the farm to the 
national scale. Doing so on both a seasonal and annual 
basis is also important given that rice may be cropped 
multiple times a year in Vietnam and other major rice 
producing countries. Evaluating management practices 
across both space and time (seasonal vs annual) would 
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also add more granularity to mitigation and adaptation 
assessment and provide farmers and managers with more 
specificity on how management should be adapted to 
achieve multiple goals at different times of the year.

Second, the goals of this study did not include a com-
parison to conventional flooding nor further opti-
mization of rice management under future climate. 
Conventional flooding is important to consider in mod-
eling activities as it is the primary driver of methane 
from rice farming systems (Carlson et  al. 2016; Zhang 
et  al. 2020; Li et  al. 2009), and many prior studies have 
demonstrated how switching to reduced water manage-
ment, AWD or intermittent flooding, can achieve sig-
nificant methane reductions (LaHue et  al. 2016; Carrijo 
et al. 2017; Nakamura et al. 2022). A comparison to con-
ventional flooding may have resulted in further reduc-
tions in methane under our INV scenarios, relevant for 
farmers who still use the practice for one or all seasons. 
However, as methods of evaluating rice GHG reduction 
and mitigation become more sophisticated (e.g. Meth-
ane Emission Reduction by adjusted Water management 
practice in rice cultivation—Gold Standard for the Global 
Goals), and practices of multiple seasonal drainage 
expands across regions, taking a conservative approach 
to estimating emissions reductions can aid more realis-
tic estimates of AWD and/or SRI co-benefits (Narayan 
et  al. 2020; Mainville et  al. 2023; AgResults. 2021; Salas 
2018; Final evaluation report: Vietnam emissions reduc-
tion challenge project final report. 2022). It is also pos-
sible, considering the responses produced by INV2, that 
rice management could be improved under future cli-
mate conditions to enhance WUE and target other co-
benefits, such as reducing non-methane GHG emissions. 
For example, applying slow-release nitrogen fertilizer 
may help reduce  N2O emissions (and  CO2 equivalent 
Additional file 1: Fig. SI-3) with minimal impacts on rice 
yields (Tan et al. 2022). Applying organic fertilizer, with 
appropriate timing, could also provide co-benefits to 
soil organic carbon and nitrogen storage while reduc-
ing GHG emissions. Future work should seek to assess 
the impact of using different baselines as well as further 
adaptation options and management interventions under 
future climate conditions.

Third, systematically identifying the key factors driving 
change between (rice) management systems and under-
standing uncertainties in process representation (e.g. in 
the underlying parameters governing model responses) 
is critical to understanding the range of rice responses 
to environmental and management conditions. We pro-
vide a very preliminary sensitivity analysis of the influ-
ence of variety in Additional file  1: SI Fig.  4 and single 
factor sensitivity tests (Additional file 1: SI Fig. 3), which 
suggest important relationships between temperature 

and methane emissions and that variety selection is an 
important factor in yield and emissions changes between 
management systems. A more complete and rigorous 
assessment of these factors would require that each be 
evaluated separately for its sensitivity to environmen-
tal conditions, as well as a combined factor analyses to 
identify important interactions and nonlinearities. Such 
interactions could be explored, for example, with a Latin 
hypercube design randomly sampling across the entirety 
of the multi-factor uncertainty space similar to the Coor-
dinated Climate-Crop Modeling Project described in 
Mcdermid et  al. (2015); Ruane et  al. 2014). Model and 
process sensitivity to early transplanting (or direct seed-
ing), CO2 fertilization effects, the dependencies of nitri-
fication and denitrification processes with changes in 
temperature (Liu et al. 2015; Cai et al. 2022), and any pos-
sible nonlinear interactions between rice system manage-
ment decisions and changing climate conditions are also 
critical to assess. Therefore, future work should seek to 
develop more systematic sensitivity testing of key soil 
biogeochemical processes and overall model sensitivity 
to varying conditions.

Fourth, as noted in the Methods, DNDC-ORYZA was 
not evaluated for its prediction of  CO2 and  N2O or water 
use efficiency (and as such there is uncertainty in the 
latter’s results). However, we evaluated the co-benefits 
and trade-offs using both absolute and relative changes 
in these WUE, so we do not anticipate that the existing 
biases would substantively change our results. Neverthe-
less, the growing need for evaluating combined mitiga-
tion and adaptation, as well as co-benefits and tradeoffs, 
in agricultural systems necessitates amassing more com-
prehensive and quality field and/or experimental site 
measurements for a larger range of quantities than con-
ventionally recorded. We acknowledge that for some 
variables, like  N2O emissions, appropriate data collection 
can prove challenging (Kritee et al. 2018; Bouwman et al. 
2013; Richards et al. 2016), although there is an emerging 
emphasis on higher quality measurements (Kritee et  al. 
2018) and so future work should seek to undertake pri-
mary data collection deploying these best practices.

Lastly, a more comprehensive identification and 
understanding of co-benefits and tradeoffs associated 
with AWD, SRI (or any other “climate-smart” manage-
ment system) must include an explicit socio-economic 
dimension as is commonly done in previous work lev-
eraging the AgMIP framework on which Fig. 2 is based 
(mostly for climate adaptation studies) (Rosenzweig et al. 
2013). Even where biophysical conditions may be some-
what homogenous, as was the case of the 83 sites from 
AgResults used here, household socioeconomic condi-
tions can be an important source of variability. To enable 
socioeconomic analyses per the framework used here 
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(Fig. 2), detailed information must be available concern-
ing biophysical aspects of on-farm management, crop 
prices, cultivation costs, household socioeconomic infor-
mation, among others. Analyses enabled by such data 
are important to understanding the reasons and condi-
tions under which farmers make decisions and choose to 
adopt (or dis-adopt) climate-smart management systems, 
which may be related to costs and incomes, labor availa-
bility, access to information, norms and many other non-
biophysical factors. These factors shape how effective and 
“scalable” a particular climate-smart management system 
in terms of adoption rates and must be considered along-
side biophysical mitigation and adaptation indicators to 
identify both environmental/climate and socio-economic 
“win–win” outcomes.

Conclusions
We herein investigating how rice management inter-
ventions, akin to those utilized in the System of Rice 
Intensification, can facilitate combined climate change 
adaptation and mitigation goals under both historical 
and future climate conditions. To explore this, we adapt 
the AgMIP integrated process-based modeling frame-
work that links multiple climate models to process-based 
crop and soil models, which have been calibrated and 
validated for important agronomic variables. Our case 
study focuses on rice farming sites in the Red River Delta, 
Vietnam. Overall, we find that two interventions, INV2 
and INV3, produce yield gains while reducing methane 
emissions across most tested sites under historical cli-
mate conditions. Under future climate conditions, the 
SRI interventions tested still deliver benefits for yields, 
methane and water use efficiency, although the propor-
tion of sites experiencing these benefits is reduced and 
WUE is more variable. This suggests that further modi-
fications and optimization of SRI-like management (e.g. 
with improved cultivars) could help sustain co-benefits 
and minimize trade-offs in the future. To our knowledge, 
this is the first such process-based integrated assessment 
of combined agricultural mitigation and adaptation in 
the Red River Delta, and as such, several uncertainties 
remain regarding model/process sensitivities to chang-
ing management and climate conditions as well as limi-
tations on the availability of comprehensive, multivariate 
observational datasets that can be used to constrain the 
models. Future work will seek to address these uncertain-
ties and limitations through novel data collection and 
systematic sensitivity testing.
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