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Abstract 

Potato is an important food crop. The Colorado potato beetle (CPB) is its key pest. CPBs are now resistant to several 
chemical pesticides, making their control more difficult. The predatory insect, Arma chinensis, is a natural enemy 
of other plant pests. We studied the predation of adult A. chinensis on CPB eggs and young larvae under indoor con-
trolled conditions and its control of CPB in cages under outdoor conditions. Adult A. chinensis effectively reduces CPB 
egg and larva populations, and its predatory functional response aligns with Holling’s Type II model. A. chinensis adults 
released within outdoor cages reduced CPB populations. Based on the predation behavior of the adults of A. chinensis 
to CPB eggs and young larvae, A. chinensis is an efficient and potential predator.
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Background
Potato is the most important non-cereal food crop 
worldwide (Tang et  al. 2022). Potatoes are starchy and 
have high nutritional value (Bradshaw and Bonierbale 
2010). Compared with wheat, rice, and corn, potatoes 
are resistant to environmental extremes and show wide 
adaptability and a broader planting range (Jansky et  al. 
2019). Colorado potato beetle is the most harmful pest 
of potato in potato cultivation regions globally (Balaško 
et  al. 2020). The larvae and adults of CPB (Coleoptera, 
Chrysomelidae) damage Solanaceae crops. The larvae 

and adults of CPB feed on potato leaves, reducing the 
yield significantly (Hare 1980).

Management of CPB populations includes chemical 
control, agricultural and physical control, and biological 
control strategies. Most CPB control methods have relied 
on pesticide use (Grafius and Douches 2008). Pesticides 
were initially effective for CPB management; however, 
their excessive use has led to significant levels of pesti-
cide resistance. By 2020, CPB developed resistance to 
most registered pesticides (Grafius 1997; Stanković et al. 
2004; Sladan et al. 2012; Szendrei et al. 2012; Scott et al. 
2015; Huseth and Groves 2013; Balaško et al. 2020). Agri-
cultural and physical control methods can be employed 
to control CPB, but these are expensive, inefficient, and 
lack precision. Therefore, low-cost, efficient, and accurate 
biological control methods need to be developed for CPB 
control.

Biological control emphasizes safety, efficiency, and 
environmental protection (Barratt et  al. 2018). Arma 
chinensis (Fallou) (Hemiptera: Pentatomidae) (Liu et  al. 
2021), Zicrona caerula (L.) (Shu et al. 2012), Phalangium 
opilio (L.) (Drummond et  al. 1990), and Adelphocoris 
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lineolatus (Goeze) (Feng et  al. 2016) are some of the 
predatory natural enemies utilized for CPB biocontrol. A. 
chinensis (Hemiptera: Pentatomidae) is particularly ben-
eficial in agricultural ecosystems, as it preys on numerous 
field pests and has been successfully used commercially. 
Therefore, we hypothesized that the use of A. chinensis 
can reduce the CPB population.

A. chinensis is a predaceous stink bug primarily dis-
tributed across China, Mongolia, Japan, and other East 
Asian regions (Zou et al. 2012). Within China, it is found 
in Heilongjiang, Jilin, Xinjiang, and other provinces (Zou 
et  al. 2019). As a native species of China, nymphs and 
adults of A. chinensis prey on the eggs, larvae, pupae, and 
adults of herbivorous insects belonging to various orders, 
including Lepidoptera, Coleoptera, Hymenoptera, and 
Hemiptera (Zhao et al. 2011). While previous reports on 
the predation of CPB by A. chinensis have largely been 
based on indoor studies, natural environmental condi-
tions are inherently variable and less controlled than 
those in a laboratory setting. Consequently, the effective-
ness of A. chinensis in controlling CPB populations in the 
field is unclear. Recognizing the importance of under-
standing both laboratory and field dynamics, it is crucial 
to investigate the predation of A. chinensis on CPB under 
laboratory conditions and conduct controlled release 
experiments with A. chinensis adults in field cages. The 
outcomes of these experiments are expected to be impor-
tant in elucidating how A. chinensis preys on CPB in the 
natural environment and assessing the efficacy of this 
biological control agent. In this study, we evaluated the 
potential of A. chinensis for biological control of CPB by 
examining its predation function response under labo-
ratory conditions and conducting controlled outdoor 
release of A. chinensis adults. The results of these investi-
gations can provide insights into the feasibility and effec-
tiveness of utilizing A. chinensis as a biological control 
agent against CPB.

Methods
Test insects
The A. chinensis population was purchased from Henan 
Keyun Biopesticide Co., Ltd. A. chinensis were fed Anthe-
raea pernyi (Geurin-Meneville) pupae in a controlled 
environment chamber and raised in incubators set at 
27 ± 1 °C, with 65 ± 5% relative humidity (RH) and a pho-
toperiod of 16:8  h (L:D). Experiments were conducted 
after rearing for two generations.

CPBs were collected in Qapqal County, Ili Prefec-
ture, Xinjiang (E 80°31′–81°43, N 43°17′–43°57′) and 
subsequently reared in controlled climate incubators at 
27 ± 1 °C, 65 ± 5% RH, and 16:8 h (L:D). For two genera-
tions, they were reared on Shepody potato leaves before 
commencing the experiments. The primary objective 

of the indoor experiments was to determine the devel-
opmental period of CPB at each life stage to calculate 
the survival rate of outdoor CPB at corresponding ages. 
In the laboratory experiments, the same conditions as 
rearing [27 ± 1  °C, 65 ± 5% RH, and 16:8  h (L:D)] were 
employed; CPB eggs were divided into three replicates, 
with 40–50 eggs per replicate placed in individual Petri 
dishes. Strict protocols were followed to handle and 
monitor the eggs to ensure the accuracy and reproduc-
ibility of the experiments. Upon hatching, the newly 
emerged larvae were provided with fresh potato leaves. 
Daily observations were made to record the devel-
opmental duration of each larval instar and the pupal 
stage within the Petri dishes.

Predation functional response of the adult of A. chinensis 
indoors on CPB eggs and young larvae
Adult individuals of A. chinensis were starved for 24 h. 
Each adult of A. chinensis was placed in Petri dishes 
with eggs or young larvae (1st instar larvae, 2nd instar 
larvae) of CPB at different densities. Prey densities were 
15, 20, 25, 30, 35, and 40 CPBs per Petri dish, respec-
tively. After 24 h, the predation of A. chinensis on CPBs 
was recorded in each Petri dish. The number of preyed-
upon CPBs was determined by counting the dead bod-
ies that had been sucked dry. For each prey density 
treatment, there were six replicates.

Outdoor control effect of A. chinensis on CPB
Nine cages (1  m × 1  m × 1  m), each containing nine 
pots of potatoes were used. When the potato plants 
reached approximately 20 cm in height, each cage was 
inoculated with 8 adult CPBs (4♀ + 4♂). The number 
of surviving adult CPB and the number of eggs pro-
duced were monitored every 2 days. If CPB eggs were 
observed for 14 consecutive days (7 occasions), adult A. 
chinensis was released. Adult A. chinensis were starved 
for 24 h before being released. The benefit/harm ratios 
were set as follows: Control (Not releasing A. chinensis), 
1:40 (Release 1 A. chinensis per 40 CPB), 1:20 (Release 1 
A. chinensis 20 per CPB) (the number of CPBs includes 
the total number of CPB eggs and larvae). Each treat-
ment was repeated thrice. The numbers of surviving A. 
chinensis and CPBs were observed and recorded every 
48 h. The experiment lasted 60 days. A thorough exami-
nation was conducted to inspect all leaves of the nine 
plants in each cage and record the number of CPB indi-
viduals in each cage. The experiment ran from July 22, 
2021, to October 4, 2021. Potatoes were planted in the 
shade, where the ambient temperature was maintained 
at 15–29 ℃.
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Data analyses
Predatory function
The functional response was analyzed in two phases in 
the SAS statistical environment (version 8). The first 
phase involved determining the type and estimating 
the parameters of the functional response curve. Find-
ing the type of functional response for calculating the 
functional response parameters using a proper model 
was compulsory. The type was determined by applying 
logistic regression of the proportion of prey eaten as a 
function of initial prey density offered. A polynomial 
logistic regression equation assuming a binomial distri-
bution of data to define the type of functional response 
was fitted as follows:

where Na and N0 indicate the number of prey consumed 
and the initial prey density offered, respectively, and Na/
N0 is the proportion of prey consumed. P0, P1, P2, and P3 
are the regression parameters representing intercept or 
constant, linear, quadratic, and cubic coefficients, respec-
tively. If P1 > 0 and P2 < 0, the proportion of prey con-
sumed was positively density-dependent, representing a 
type III functional response. If P1 < 0, the proportion of 
prey consumed declined monotonically with the initial 
prey density, a type II functional response was considered 
(Juliano 2001).

The Holling II type predation function response 
model reflects the change of predation of a single natu-
ral enemy within a fixed time with changes in prey den-
sity (Huang et al. 2021, 2019; Park et al. 2021; Roubinet 
et  al. 2017). Following this analysis, we used Holling’s 
equation to calculate the functional response if our 
data fit a type II functional response. Since the experi-
ment was conducted without prey replacement during 
the course of the experiment, the appropriate model to 
estimate the handling times (Th) and the attack rates (a) 
for a type II functional response was Holling’s random 
predator equation (Holling 1959):

where T represents the time that predator and prey are 
exposed to each other (T = 1 day), and a is the predation 
coefficient or the predator attack rate. The value a/Th 
indicates the effectiveness of the predator, calculated by 
dividing a by Th, and the maximum theoretical predation 
rate, K = T/Th, was also calculated.

(1)
Na

N0
=

exp(P0 + P1N0 + P2N0
2
+ P3N0

2)

1+ exp
(

P0 + P1N0 + P2N0
2
+ P3N0

2
)

(2)Na=
aTN

1+ aThN

Comparison of the survival rate of CPB for different instars
We used Zhao Zhimo’s average duration method to cal-
culate the egg-hatching rate and the larval stage survival 
rate (Zhao and Zhou 1984):

where Nis represents the cumulative number of indi-
viduals in the larval stage; D represents the survey time 
interval; T represents the developmental duration; Nim 
represents the number of individuals surviving in the 
middle of each stage; Nib represents the starting number, 
and Si represents the survival rate.

We used Excel to record and count the survey data and 
calculated the predation of CPB eggs and young larvae, 
number of tubers per plant, yield per plant, and the sur-
vival rate of CPB for each instar stage. Statistical analy-
sis was performed using a one-way analysis of variance 
(ANOVA), conducted using the IBM SPSS Statistics 
21.0 software. The LSD method was used to differentiate 
experimental results when the homogeneity of variance 
was satisfied; else, the non-parametric Kruskal–Wal-
lis test method was used to evaluate differences among 
groups.

Results
Functional response
Logistic regression yielded a negative linear parameter 
(P1 < 0) for adult A. chinensis, suggesting that the predator 
displayed a type II functional response for CPB eggs and 
young larvae (Table 1).

(3)Nim=
NisD

Ti

(4)Nib =
Ti−1Nim + TiN(i−1)m

Ti + Ti−1

(5)Si=
N(i-1)b

Nib

Table 1  Results of logistic regression analysis for the proportion 
of nymphs of adult A. chinensis predates on CPB eggs and young 
larvae relative to the initial number of nymphs provided

CPB stage Parameter Estimate Standard error Pr

Egg P0 12.9546 3.2117 <0.0001

P1 −1.4689 0.3779 0.0001

P2 0.0512 0.0140 0.0003

P3 −0.0006 0.0002 0.0006

Young larva P0 9.3415 3.1505 0.0030

P1 −1.0336 0.3691 0.0051

P2 0.0364 0.0137 0.0079

P3 −0.00041 0.000162 0.0107
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The mean number of CPB eggs consumed by the adult 
of A. chinensis at prey densities of 15, 20, 25, 30, 35, and 
40 was 9.00, 8.83, 7.67, 11.33, 16.00, and 16.67, respec-
tively (Fig. 1a).

The mean number of CPB young larvae consumed by 
the adult of A. chinensis at the prey densities of 15, 20, 
25, 30, 35, and 40 was 9.50, 10.67, 9.33, 15.67, 17.17, and 
17.67, respectively (Fig. 1b).

The mean number of prey a predator consumes 
increases with the initial density offered. The highest 
number of CPB eggs and young larvae was consumed at a 
prey density of 40.

Data in Table 2 reveal that the coefficient of attack rate 
(a) for adult A. chinensis to the eggs and young larvae of 
CPB are 1.07 and 0.87, respectively. The handling time 
for adult A. chinensis to the eggs and young larvae of CPB 
was 0.06 and 0.04, respectively. The maximum theoretical 
predation rate for adult A. chinensis on eggs and young 
larvae of CPB was 17.60 and 28.96, respectively.

Outdoor control effect of A. chinensis on CPB
Different benefit-to-harm ratios did not significantly 
influence the number of tubers per plant (p = 0.293, 
p > 0.05). Different benefit-to-harm ratios significantly 
influenced the potato yield per plant (p = 0.000, p > 0.05). 
When the benefit-to-harm ratio was 1:20, the yield per 
potato plant was the highest, while at the Control ratio, 
the potato yield per plant was the lowest (Fig. 2).

The survival rate of young and old larvae of CPB was 
not significantly influenced by different benefit-to-harm 
ratios (p > 0.05). Different benefit-to-harm ratios sig-
nificantly influenced the total immature survival rate of 
CPB (p = 0.019, p < 0.05). When the benefit-to-harm ratio 
was 1:20, the total immature survival rate was the lowest 
(Table 3).

The effects of A. chinensis on the population density of 
CPB are illustrated in Fig.  3. After 46  days, CPB adults 

began to emerge. The number of adult CPB emerging 
from the soil at benefit-to-harm ratios of 1:40 and 1:20 
was significantly lower than that of the control treatment 
(p = 0.023, p < 0.05) (Fig. 3).

Discussion
The adults of A. chinensis exhibited the highest predation 
on eggs of CPB. Consequently, the release of A. chinen-
sis adults during the CPB’s reproductive season is rec-
ommended for effective control. Analysis of the benefit/
harm ratios indicated a decrease in the CPB population 
with increased numbers of released A. chinensis adults, 
signifying a substantial predation impact. These findings 
can facilitate the determination of optimal release quan-
tities of A. chinensis for optimal CPB management.

The functional response of a predator is pivotal in the 
population dynamics of prey (Schenk and Bacher 2010). 
The results of this study show that the predatory func-
tional responses of the adult of A. chinensis to CPB eggs 
and young larvae are consistent with the Holling II disk 
equation. Previous studies indicate that the predatory 
functional responses of Coleomegilla maculate to CPB 
eggs conform to the Holling II disk equation (Munyaneza 
and Obrycki 1997). The results of this study are in line 
with previous findings.

Fig. 1  Functional response of adult of A. chinensis at different prey densities of CPB eggs (a) and young larvae (b) during the 24 h period

Table 2  Parameters of functional response of adult A. chinensis 
to CPB eggs and young larvae

a = Coefficient of attack rate, Th = Handling time, K = maximum theoretical 
predation rate

CPB stage Parameters

a ± SE Th ± SE a/Th ± SE K ± SE

Egg 1.07 ± 0.20 0.06 ± 0.01 18.89 ± 3.62 17.60 ± 1.40

Young larva 0.87 ± 0.10 0.04 ± 0.01 25.33 ± 3.00 28.96 ± 2.83

p-value 0.345 0.002 0.200 0.005
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The release of A. chinensis in the field has shown effec-
tive pest control. Field releases of A. chinensis inhibit the 
population growth of Laphygma exigua (Hubner) (Gao 
et al. 2012), Spodoptera litura (Fabricius) (Gao et al. 2019; 
Tang et  al. 2020), and Ambrostoma quadriimopressum 
(Zhang et al. 2016). Previous studies have shown that the 
release of Chrysoperla rufilabris (Nordlund et  al. 1991), 

Perillus bioculatus (F.), or Podisus maculiventris (Say) 
(Hough-Goldstein and McPherson 1996) in the field can 
suppress the population growth of CPBs. For example, in 
field cage experiments, CPB populations were reduced by 
84%, with release rates of 80,940 Chrysoperla rufilabris 
larvae per hectare (Nordlund et al. 1991). We found that 
after the release of A. chinensis adults in outdoor CPB-
infested areas, according to different benefit/harm ratios, 
potato yields increased, the CPB population decreased, 
and the survival rate of old larvae declined. The results of 
this study are consistent with previous findings.

Zhang and Chen concluded that the utilization of 
natural enemies should ideally be practical, safe, effec-
tive, and economical (Zhang and Chen 2014). A. chin-
ensis can now be propagated using artificial food, with a 
short propagation cycle (Forestry Industry Standard of 
the People’s Republic of China). Consequently, A. chinen-
sis is increasingly being applied in fields for pest control 
and feeds on a diverse range of pests (Gao et al. 2012; Lei 

Fig. 2  Number of potato tubers per plant (a) and yield per plant (b) under different benefit/harm ratios (number of A. chinensis adults/number 
of CPBs)

Table 3  Survival rate of CPB under different benefit/harm ratios

Data in the table are mean ± SE, and different lowercase letters following the 
data in the same column indicate a significant difference (p < 0.05)

Benefit/harm 
ratios

Survival rate of 
young larvae

Survival rate of 
old larvae

Immature 
total survival 
rate

Control 83.22 ± 4.68a 79.91 ± 8.72a 31.43 ± 6.96a

1:40 78.03 ± 3.83a 64.65 ± 8.28a 13.79 ± 4.92a

1:20 67.53 ± 5.47a 52.09 ± 0.22a 3.64 ± 0.31b

Fig. 3  Changes in population (a) and adult emergence number (b) of CPB under different benefit/harm ratios
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et al. 2020; Shu et al. 2020). Although the results of this 
study showed that the A. chinensis preys on CPB under 
natural conditions, importantly, these experiments were 
conducted in a controlled cage environment. Therefore, 
when considering the release of A. chinensis into the field, 
numerous factors must be considered. First, potatoes are 
subject to infestation by various pests besides CPBs, such 
as Phthorimaea operculella (Zeller) (Rondon 2020) and 
Henosepilachna vigintioctopunctata (Fabricius) (Wang 
et  al. 2017). Given that A. chinensis is not an obligate 
predator of CPBs, further research is necessary to deter-
mine if it preferentially targets CPBs in field conditions. 
Second, this study has only demonstrated that adult A. 
chinensis prey on CPBs under natural conditions. When 
planning to release A. chinensis into the field, factors such 
as the optimal release time, the instar to be released, and 
the proportion of A. chinensis to release will require fur-
ther evaluation and experimentation.

Conclusions
CPB is a highly detrimental potato pest and frequently 
inflicts significant losses on the potato industry. Our 
findings demonstrated that A. chinensis can effectively 
manage CPB populations. Specifically, adult A. chinensis 
exhibit significant predation effects on the eggs and lar-
vae of CPBs, with their predation functional response 
conforming to Holling’s Type II model. Furthermore, in 
field cage experiments, the release of adult A. chinensis 
successfully reduced the number of CPBs. Investigating 
the predation capabilities of A. chinensis on CPB in field 
conditions could pave the way for expanding potato cul-
tivation, enhancing potato yields, and accelerating the 
adoption of potatoes as a staple food. In the future, we 
plan to further investigate the predation behavior of A. 
chinensis in field conditions and its influencing factors, in 
order to optimize their application as biological control 
agents.
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