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Abstract 

Background: Polyphenolic compounds like tannins can increase nitrogen (N) excreted in feces when consumed 
by ruminants but less often noted is increased N in fecal acid detergent fiber (ADF-N). Some simple phenolics are 
thought to facilitate binding interactions between nitrogenous compounds and soil. We hypothesized that contact 
with common phenolic acids, such as found in crops, could increase ADF-N, in excreted manure.

Methods: We performed two separate experiments to test our hypothesis. In the first experiment, we applied three 
solutions (i.e., 0.001, 0.01, 0.1 M) of sodium benzoate (B0), sodium 4-hydroxybenzoate (B1), 3,4-dihydroxybenzoic 
acid (B2), gallic acid (B3), ammonium benzoate (AB), and ammonium chloride (AC) to dried pulverized manure and 
measured ADF-N. In the second experiment we modified the methodology, by applying more compounds at a single 
concentration (0.001 M) and including an added nitrogen  (NH4Cl) treatment.

Results: We found a statistically significant interaction between treatment and concentration in the first experiment 
(P < 0.0001), but the main effects were inconsistent and there was no significant difference between the treatment 
means and the control mean (samples treated with water). Conversely, we observed a significant treatment effect 
in the second experiment (P < 0.0001), but no significant effect of the added N or interaction. Samples treated with 
water, B0, or B3 were similar and indistinguishable from untreated manure. The treatment with B1, caffeic acid, (CAF), 
or B2 increased ADF-N from 13.2 to 17.5% while +(−)catechin (CAT), and p-coumaric acid (p-COUM), increased it by 
19.7 and 22.2% respectively. Epigallocatechin gallate (EGCG) and ferulic acid (FER) increased ADF-N by 32.6 and 34.1%, 
respectively.

Conclusions: The results support our hypothesis that N in manure can complex with manure ADF following expo-
sure to benzoic acid and especially cinnamic acid derivatives. This resulted in greater amounts of N bound to rela-
tively recalcitrant fibers in excreted manure. Thus, N mineralization may be impacted by increasing or decreasing the 
amount of N bound to manure fibers or other recalcitrant soil compounds such as lignin, but it is unclear whether 
such N would be less available to plants, or for volatilization, or leaching.
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Background
The phenolic class of secondary plant metabolites (PSMs) 
ranges from large complex tannins to simple phenolic 
acids. These compounds participate in many important 
plant functions including responses to herbivory, envi-
ronmental stress, and competition (e.g., Kong et al. 2019; 
Kumar et al. 2020; Naikoo et al. 2019; Siqueira et al. 1991; 
Yang et al. 2018). In soils, PSMs participate in numerous 
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reactions that affect biological, chemical, and physical 
phenomena, stimulate or inhibit soil microorganisms, 
and affect important biogeochemical processes such 
as organic matter formation and nutrient cycling (e.g., 
Chomel et  al. 2016; Hättenschwiler and Vitousek 2000; 
Mallik 1997; Mandal et  al. 2010; Marchiosi et  al. 2020; 
McGivern et al. 2021; Schmidt et al. 2013; Siqueira et al. 
1991). When consumed by ruminants such as cattle or 
goats, PSMs (especially tannins) can change nutrient 
use efficiency and can improve animal health and envi-
ronmental services (e.g., Kelln et al. 2020; Ku-Vera et al. 
2020; Maxin et al. 2020).

Large complex PSMs such as tannins are not usually 
associated with annual crops. Instead, relatively simple 
phenolic acids such as hydroxybenzoic acids and hydrox-
ycinnamic acids are more common, especially in cereals 
(Gunia‐Krzyżak et al. 2018; Naczk and Shahidi 2006; Otte 
et al. 2020; Stuper-Szablewska and Perkowski 2019). Sim-
ple phenolic compounds may enter soil as decomposition 
products, root exudates, or through the actions of micro-
organisms and may participate in important soil pro-
cesses like nutrient cycling or the formation of protected 
or polymerized soil organic matter (Šmejkalová et  al. 
2006; Sokol et al. 2019). Tannins and phenolic acids are 
known to sorb to soil (Cecchi et  al. 2004; Makino et  al. 
1996) and have been found to reduce N solubility when 
added to soil presumably through abiotic mechanisms 
that bind unspecified forms of N to soil organic matter 
or the inorganic soil matrix (Halvorson et al. 2013, 2016). 
Less often noted are changes in ruminant manure com-
position associated with consumption of phenolic com-
pounds including increases in the amount of N recovered 
in fecal acid detergent fiber (ADF-N) (Halvorson et  al. 
2017; Powell et al. 2009).

Acid detergent fiber in forages and manure is com-
posed of cellulose, lignin, and acid-insoluble ash (Van 
Soest et  al. 1991). Forage ADF is typically composed of 
about 80% cellulose, with lignin ranging from about 11% 
in grasses to about 16% in alfalfa and 0.3–2.9% ash (Col-
burn and Evans 1967). Espinosa et  al. (2017) reported 
that cereal straws (e.g., crop residues) are composed of 
34–44% cellulose, 27–38% hemicellulose, 16–18% lignin 
and 6–9.5% ash. Any N that is sequestered in these plant 
cell wall fractions has low biological availability and tends 
to be recovered in ADF. Such N is a feature of fresh and 
stockpiled forages and has been attributed to the forma-
tion of complexes in the presence of tannins or to Mail-
lard browning reactions caused by heating and drying 
(Licitra et  al. 1996). In manure, lignin may directly or 
indirectly inhibit the decomposition of cellulose by com-
peting for or releasing phenolic degradation products 
that inhibit hydrolytic enzyme activity. (Kim 2018; Liao 
et al. 2005). Lignin is considered to be insoluble (Naczk 

and Shahidi 2006; Pérez et al. 2002) and decomposes rel-
atively slowly in soil contributing to stocks of recalcitrant 
soil organic matter especially as it becomes depolymer-
ized and associated with mineral constituents (Angst 
et  al. 2021). Acid insoluble ash in ADF may originate 
from biogenic mineral fractions and contamination from 
soil and dust and contain silica (Crocker et al. et al. 1998; 
Van Soest 1994).

Many studies have demonstrated that consumption of 
polyphenolic PSMs like tannins by cattle can increase 
N use efficiency, reduce enteric greenhouse gas emis-
sions and shift the pattern of N excretion from urine to 
manure (Aboagye and Beauchemin 2019; Addisu 2016; 
Min et  al. 2020; Orzuna-Orzuna et  al. 2021; Waghorn 
and McNabb 2003). However, much less is known about 
potential effects of dietary simple PSMs, such as benzoic 
and cinnamic acid derivatives, on animal performance 
or manure quality. Manure contributions to soil fertil-
ity and organic matter are influenced by its composi-
tion, quantity, and patterns of distribution (Rayne and 
Aula 2020) and thus new information about the effects 
of simple PSMs on manure quality and quantity will be 
of great interest to producers seeking to benefit from 
combining crop and animal production (Archer et  al. 
2018; Sekaran et  al. 2021). The direct and indirect link-
ages between consumption of PSMs and both animal and 
human health are increasingly appreciated and a focus 
of continuing research (Kumar and Goel 2019; Santana-
Méridas et  al. 2012; Tufarelli et  al. 2017). Consequently 
there is growing consensus that an integrative approach 
for managing PSMs in agroecosystems is needed that will 
benefit humans, crops, livestock, and the soil (Clemensen 
et al. 2020; Iqbal et al. 2020).

While many studies have focused on the effects of die-
tary PSMs on animal health and productivity, fewer have 
addressed their effects on manure composition (Halvor-
son et al. 2017; Ingold et al. 2015; Powell et al. 2009) or 
decomposition (Hao et al. 2011; Ingold et al. 2018, 2021; 
Powell et  al. 2011). Notably, there is dearth of informa-
tion regarding interactions between nondietary PSMs 
and excreted manure. Manure, deposited on a field 
directly by animals or applied mechanically to soil, could 
encounter phenolic compounds, originating from plant 
residues or microbial activity, that might impact its com-
position, rate of mineralization, and subsequent nutrient 
availability to plants. The objective of this study was to 
uncover evidence of interactions between simple phe-
nolic plant secondary compounds and excreted manure. 
Based in part on previous observations we hypoth-
esized that topical applications of benzoic and cinnamic 
acid derivatives would increase sorption of soluble N in 
manure to the insoluble ADF fraction. Since such simple 
phenolic acids are common in plants and soil, they would 
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likely be encountered directly by grazing animals, as part 
of the diet, by deposited excreta and during composting 
(Cascant et  al. 2016; Marchiosi et  al. 2020; Salami et  al. 
2019; Strobel 2001).

Materials and methods
Feeding and manure collection
The manure used in this study originated from beef cat-
tle in the resident herd at the Northern Great Plains 
Research Laboratory in Mandan, ND. Samples of manure 
were collected from individual Angus heifers (18-months 
old, ~ 385 kg) after a minimum 2-week adjustment period 
on the diet. The heifers were fed collectively, using a feed 
wagon, with a mixed daily ration calculated as 9.53  kg 
oat hay, 907  g of corn grain and 907  g of dry peas ani-
mal −1   day−1 (Table 1). The oat hay was locally sourced, 
near Almont, ND, and corn and peas were obtained from 
a feed mill in Harvey, ND. The ration contained 8.2% 
crude protein and was intended to represent a mainte-
nance ration for beef heifers, providing 24.3 Mcal  d−1 
allowing for 0.947 kg  d−1 gain calculated using the 2016 
beef cattle model (National Academies of Sciences and 
Medicine 2016). The average ADF content of the mixed 
ration (32.6%) was comparable to other forages (Jung 
et al. 1997). Throughout the experiment, all animals had 
ad  libitum access to trace mineralized salt (American 
Stockman Big 6) and tap water.

Manure sample collection occurred between 27 Febru-
ary and 13 March 2020. Cows were held individually in 
pens (~ 9.3  m2) overnight, and manure was collected off 
the pen floor using a shovel the following morning. The 
pens had impervious concrete floors; thus, manure was 
easily collected with minimal contamination with urine 
and other substances. The pens were cleaned after each 
day’s collection. Daily collections of manure were com-
posited by cow, dried to a constant weight at 55  °C and 

ground in a Wiley mill with a 2 mm screen. The dry and 
ground samples were stored in double-bagged 1-gallon 
Ziplock plastic bags and frozen (− 20 °C) until use. Rep-
resentative samples of oat-hay, corn and peas used for the 
ration were procured and stored air-dry at room temper-
ature until analysis.

Set‑up of the experimental
We performed two separate experiments, hereafter 
referred to as Experiment 1 and 2 to test our hypothesis.

Experiment 1
Experiment 1 was designed as a randomized complete 
block. Twenty samples of manure (mass 13 ± 0.1  g) 
from five randomly selected heifers were weighed into 
10 cm by 20 cm in-situ forage bags (ANKOM Technol-
ogy, Macedon NY) and secured with two nylon zip ties. 
Randomly selected bags from each animal were assigned 
to receive one of the 20 treatment combinations (total 
n = 100), which included handling only (Untreated), 
deionized water  (H2O) or one of the three concentra-
tions (i.e., 0.001  M, 0.01  M or 0.1  M) of aqueous solu-
tions of six compounds: sodium benzoate (B0), sodium 
4-hydroxybenzoic acid (B1), 3,4-dihydroxybenzoic acid 
(B2), 3,4,5-trihydroxybenzoic acid monohydrate (B3, 
gallic acid), ammonium benzoate (AB), and ammonium 
chloride (AC) (Table 2). These compounds were selected 
to evaluate the effects of hydroxybenzoic acids with vary-
ing substituent configurations and to determine if addi-
tions of ammonia would impact ADF-N in the presence 
(AB) or absence (AC) of a benzene ring. Derivatives of 
both benzoic and cinnamic acids are naturally common 
and sometimes added to animal feed or silage to improve 
stability or inhibit pathogens (Del Olmo et al. 2017; Muck 
et al. 2018). The treatment solutions were prepared fresh 
on the day of use.

Table 1 Feed  analysisa for the oat hay-corn-pea mixed ration

a CP: Crude Protein, (%); ADF: Acid Detergent Fiber, (%); NDF: Neutral Detergent Fiber, (%); TDN: Total Digestible Nutrients, (%); NEm: Net Energy Maint, (MCal/cwt); 
NEg: Net Energy Gain, (MCal/cwt); NEl: Net Energy Lact, (MCal/cwt); Ca: Calcium, (%); P: Phosphorus, (%); K: Potassium, (%); Mg: Magnesium, (%); Na: Sodium, (%); S: 
Sulfur, (%); Cu: Copper, (ppm); Fe: Iron, (ppm); Mn: Manganese, (ppm); Mo: Molybdenum, (ppm); Zn: Zinc (ppm). Dry matter values for oat hay, corn and peas were 
88.6, 86.8 and 90.1% respectively. Data: from single mixed samples, are shown on a dry weight basis
b Animals, fed collectively, were supplied with a total mixed ration providing 9.53 kg oat hay, 907 g of corn and 907 g of peas, animal −1  day−1

CP  Fiber TDN NEm NEg Nel Macrominerals Micronutrients

ADF NDF Ca P K Mg Na S Cu Fe Mn Mo Zn

% Mcal  cwt−1 % ppm

Componentb

Oat hay 7.0 36.9 58.3 60.4 60.1 34.0 63.2 0.18 0.10 1.48 0.14 0.18 0.12 2.1 106 28 1.65 43.7

Corn 8.6 2.9 9.2 87.8 98.6 67.7 89.7 0.04 0.21 0.37 0.13 0.04 0.10 0.4 44 6 0.63 39.1

Peas 19.7 17.0 23.3 66.2 68.6 41.7 86.1 0.22 0.33 0.91 0.17 0.05 0.15 3.9 129 13 0.89 67.0

Ration Mix 8.2 32.6 51.6 63.0 63.8 37.3 67.1 0.17 0.13 1.35 0.14 0.16 0.12 2.1 103 25 1.51 45.2
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Table 2 Some properties of the treatment compounds and 0.001 M solutions

a Acid dissociation constant for the first ionization  (pKa1)
b Octanol-water partition coefficients  (Kow) from https:// pubch em. ncbi. nlm. nih. gov/. Low values correspond to polar compounds while higher values are indicative of 
nonpolar ones
c Values without parentheses are for a 0.01 M aqueous solution of the treatment compound. Values in parentheses are for a solution containing 0.01 M of the 
treatment compound + 0.01 M Ammonium chloride

Treatment Source Structure Anhydrous MW Pka1
a Kow

b 0.001 M  Solutionc

Soluble‑N (mg/L)
0.001 M 
Solutionc

pH

Sodium benzoate 
(B0, ≥ 99%)

Alfa Aesar, Haverhill, 
MA USA

  

144.1 4.2 1.87 0.08 (13.0) 5.33 (5.22)

Sodium 4-hydroxybenzoate 
(B1, ≥ 99%)

Alfa Aesar, Haverhill, 
MA USA

  

160.1 4.5 1.58 0.26 (14.9) 5.72 (5.58)

3,4, dihydroxybenzoic acid 
(B2, ≥ 99%)

Frontier Scientific,
Logan, UT USA

  

154.1 4.3 0.86 0.25 (13.6) 3.90 (3.82)

Gallic acid monohydrate 
(B3, ≥ 98%)

Sigma-Aldrich, Inc., St 
Louis, MO USA

  

(170) 4.4 0.7 0.25 (16.2) 3.76 (3.76)

p-Coumeric acid 
(p-COUM, ≥ 98%)

Sigma-Aldrich, Inc., St 
Louis, MO USA

 
 

164.2 4.6 1.79 0.32 (17.8) 3.73 (3.75)

Caffeic acid (CAF, ≥ 98%)a Sigma-Aldrich, Inc., St 
Louis, MO USA   

180.2 4.5 1.15 0.43 (17.4) 3.77 (3.76)

trans-Ferrulic acid 
(FER, ≥ 99%)

Sigma-Aldrich, Inc., St 
Louis, MO., USA   

194.2 4.4 1.51 0.30 (16.4) 3.76 (3.73)

( +)-Catechin hydrate 
(CAT, ≥ 98%)

Sigma-Aldrich, Inc., St 
Louis, MO USA

  

290.3 8.6 0.51 0.26 (16.9) 7.43 (6.67)

Epigallocatechin gallate 
(EGCG, ≥ 95%)

Biosynth International, 
Inc., San Diego, CA USA

 
 

458.4 7.7 1.2 0.29 (15.1) 6.30 (5.85)

https://pubchem.ncbi.nlm.nih.gov/
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The samples were placed into 1-quart Ziplock bags 
with 90  mL of the assigned treatment solution. Sealed 
Ziplock bags containing the sample and solution were 
agitated with an orbital shaker at 100 rpm for 4 h at room 
temperature. After 4  h, the excess solution was drained 
from the 1-quart plastic bag and the treated manure sam-
ple remaining in the in-situ bag was subjected to four vig-
orous rinses with deionized water alternating with firm 
squeezing (double-gloved hand) to remove excess liquid. 
After the final cycle, the washed manure sample, still 
contained by the Ankom in-situ bag was dried at 55  °C 
for a minimum of 36  h. Dried sample bags were stored 
frozen (− 15 °C) until transport for analyses.

Experiment 2
Experiment 2 was also laid out in a randomized com-
plete block design similar to Experiment 1. However, 
for Experiment 2, we doubled the number of manure 
sources, and assessed a broader range of treatment com-
pounds including both hydroxybenzoic and hydroxy-
cinnamic acids, common to crops, and several other 
polyphenolic compounds of interest. We examined 
only a single solution concentration but added a second 
treatment factor, inorganic N, to detect possible addi-
tive effects of the treatment compounds and additions 
of amino-containing compounds. We also increased the 
length of time that manure samples were incubated with 
treatment solutions, minimized subsequent sample han-
dling, and increased post-treatment drying time.

Twenty-one samples of dried and ground manure from 
each of ten randomly selected heifers were prepared 
as described for Experiment 1. Manure samples from 
each animal were randomly selected to receive one of 
the treatment combinations, which included untreated 
manure, deionized water, or 0.001  M aqueous solutions 
of nine compounds, namely, sodium benzoate, sodium 
4-hydroxybenzoate, 3,4-dihydroxybenzoic acid, gallic 
acid monohydrate, +(−) catechin (CAT), epigallocat-
echin gallate (EGCG), ferulic acid (FER), p-coumaric 
acid (p-COUM), or caffeic acid (CAF) (Table 2). In addi-
tion to being a common phenolic acid, the GA treat-
ment was of interest because it is a subcomponent of 
some hydrolysable tannins (e.g., 1,2,3,4,6-pentagalloyl-
glucose) while CAT, a flavan-3-ol, was chosen because 
it is a building block of some condensed tannins. EGCG 
was included because it combines characteristics of both 
condensed (flavan-3-ol) and hydrolysable (galloyl group) 
tannins making it a useful model compound. It’s low 
MW (relative to the usual definition for tannins) makes 
it easily soluble and it readily forms complexes with pro-
teinaceous compounds (Hagerman 2012). A second set 
of 0.001  M solutions was prepared that contained both 
the treatment compound (or  H2O) and  NH4Cl added 

as solids at the time of each solution preparation. Thus, 
the total number of samples for Experiment 2 was 210 
(10 cows × 10 treatments (9 compounds +  H2O) × 2 N 
treatments + Untreated).

Treatment solutions were applied to manure subsam-
ples in Ziplock bags, sealed, and agitated for 24 h at room 
temperature. After incubation, treated manure remaining 
in the in-situ bags was not rinsed as in Experiment 1 but 
instead, excess solution was removed by manual squeez-
ing. The damp manure sample still contained by the in-
situ bag was dried at 55  °C for 72 h. Dried sample bags 
were stored frozen (− 15 °C) until transport for analyses. 
Aliquots of the treatment solutions were collected and 
stored frozen.

Chemical analyses of feed and manure
Chemical analyses were conducted on diet compo-
nents and untreated manure samples by a commercial 
lab (Ward Laboratories Inc., Kearney, NE). Total C and 
N was determined by dry combustion using a LECO 
FP-2000 CN analyzer (LECO Corporation, St. Joseph, 
MI). Inorganic N was determined colorimetrically with a 
Lachat Quikchem 8500 (Hach Company, Loveland, Colo-
rado) and organic N estimated as the difference between 
total and inorganic N. The concentrations of total P 
 (P2O5), K  (K2O), S, Ca, Mg, Na, Zn, Fe, Mn, Cu, and B 
in feed and manure were determined by Inductively Cou-
pled Plasma (ICP) spectrometry (iCAP 6500 Duo ICP 
instrument, Thermo Fisher Scientific Inc., Waltham, MA) 
and pH was measured by electrode.

The effects of treatment solutions on fiber-bound N in 
manure were determined by Ward Labs from the amount 
of N (LECO) retained in acid detergent fiber (ADF-N). 
Acid detergent fiber was measured by the Van Soest 
technique (Van Soest et  al. 1991) following the Ankom 
method (Vogel et  al. 1999), using a Fiber Analyzer 220 
(ANKOM Technology, Macedon, NY), and using the cus-
tomary acid detergent solution.

Treatment solution pH was determined, and water-
extractable N of thawed treatment solutions and 
untreated manure was determined using a Shimadzu 
TOC-LCSN analyzer equipped with a TNM-L mod-
ule (Shimadzu Scientific Instruments, Columbia, 
MD). Samples of untreated manure (0.3  g), weighed 
into tared Oak Ridge centrifuge tubes (50  mL, nomi-
nal), were treated with 30  mL of room temperature 
(∼23  °C) deionized water. After vortexing for 5  s and 
orbital shaking at 200 rpm for 1 h at room temperature, 
the samples were centrifuged for 8  min at 10,000  rpm 
(11,952  g), decanted through a Whatman #1 filter 
paper, and the liquid was analyzed for N content within 
5 h.
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Statistical analysis
Data analysis for these investigations was conducted 
using SAS/STAT software, version 9.4 of the SAS System 
for Windows (© 2002–2012 by SAS Institute Inc., Cary, 
NC, USA). Average basic composition of the oat hay-
corn-pea diet and the manure subsequently produced 
by cows was determined arithmetically using PROC 
TABULATE.

In Experiment 1, we tested whether the ADF-N in 
manure samples was increased by the 4-h exposure to 
solutions of treatment compounds (one of six com-
pounds or just  H2O) applied at three concentrations; 
0.001 M, 0.01 M and 0.1 M. We performed a linear mixed 
effects analysis by holding the treatment compounds 
and concentration as fixed effects and animals (n = 5) to 
be a random effect. In Experiment 2, we tested whether 
the ADF-N in manure samples was increased by a 24-h 
exposure to a 0.001 M solution of treatment compounds 
applied with or without additional inorganic N in the 
form of  NH4Cl. We classified the treatment compounds 
and added N as fixed effects and considered animals 
(n = 10) to be a random effect.

In both experiments, the effects of treatment combina-
tions on manure ADF-N were tested using SAS PROC 
GLIMMIX (Gbur et al. 2012; SAS Intitute 2013). We con-
sidered ADF-N data as binomial and fit proportions of 
ADF-N to the model assuming a beta distribution with 
a logit link. LSMEANS from fitted models were used to 
test effects of treatment compound, concentration, and 
their interaction (Experiment 1) or the effects of treat-
ment compound, added N, and their interaction (Experi-
ment 2). Unless otherwise noted, post hoc multiple 
comparisons among treatment means were considered 
significant at P ≤ 0.05 after adjustment with the Tukey–
Kramer method. Additionally, Dunnett’s test was used to 
compare the proportion of ADF-N for each of the treat-
ment combinations in each experiment to the propor-
tion of ADF-N in  H2O-treatment used as the “control” in 
Experiment 1 or untreated manure in Experiment 2, to 
determine whether there had been a significant change in 
ADF-N from initial values in the manure. The LSMEANs 
(± standard error of the mean) produced by the mixed 
model analyses of ADF-N are expressed on an oven dry 
mass basis.

Results
Experiment 1
ADF-N demonstrated a significant (P < 0.0001) interac-
tion between treatment and concentration. Main effects 
of treatment compound were observed at all concentra-
tions (Fig. 1), but clear trends were not apparent across 
the different concentrations of each treatment. At the 
lowest treatment concentration (0.001  M), average 

ADF-N, observed in samples treated with B0, was signifi-
cantly greater than the value recorded for B1. Otherwise, 
treatments could not be statistically distinguished from 
each other. The treatment with 0.01  M solutions of AC 
and B3 resulted in the highest values of ADF-N, both sig-
nificantly greater than the lowest value for B2. The dif-
ference between treatment means was more apparent at 
the 0.1 M concentration. Samples treated with AC or B1 
were significantly higher than samples treated with B0, 
B2, or B3.

The effects of concentration also varied with treatment. 
Average ADF-N increased significantly together with 
concentration for B1. Conversely, ADF-N decreased with 
treatment concentration for B0, B2, and for B3. Significant 
effects of concentration were not observed for AB or AC.

Average ADF-N in water-treated manure 
(0.70 ± 0.03%) appeared consistently less than in 
untreated manure (0.76 ± 0.03%) (Fig.  2a, Dunnett’s 
t-test P ≤ 0.05) suggesting some N that was present 
in the fiber of untreated manure, was being solubi-
lized and removed with the four vigorous rinses after 
each treatment period. We therefore considered values 
from the samples treated with  H2O as a more appro-
priate baseline to account for any systematic errors 
introduced by post-treatment sample handling. Con-
sequently, although significant effects of additions of 
different hydroxybenzoic acids and solution concen-
trations were detected by our analysis, we found little 

Fig. 1 Manure ADF-N (%) for cows fed oat-hay mixed ration 
for Experiment 1. Bars show LSMEANS (n = 5), and error bars 
indicate the standard error calculated by the model. Abbreviations 
indicate sodium benzoate (B0), sodium 4-hydroxybenzoic acid 
(B1), 3,4-dihydroxybenzoic acid (B2), 3,4,5-trihydroxybenzoic acid 
monohydrate (B3, gallic acid), ammonium benzoate (AB), and 
ammonium chloride (AC). At each concentration, significant 
differences between treatments are denoted by letters. Within 
each treatment, significant differences between concentrations are 
denoted by number. Significant differences from the  H2O treatment 
(Dunnett’s P ≤ 0.05) are denoted with an asterisk
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meaningful distinction between the treatment means 
and samples treated with water using Dunnett’s test. 
Only the highest concentration of gallic acid resulted 
in significantly less ADF-N than the water control. This, 
together with the unexpectedly high amount of vari-
ability observed in untreated manure ADF-N among 
individual cows (ranging from 0.66 to 0.96%), indicated 
that a more robust experiment (Experiment 2, below), 
employing more animals, longer exposure to treatment 
solutions, and less post-treatment sample handling was 
needed to improve detection of treatment effects.

Experiment 2
Initial manure composition, containing an average C 
and N of 48.1 and 2.1%, respectively, demonstrated little 

variation among individual animals and yielded a C:N 
ratio of 22.9 ± 0.4 (Table 3). Concentrations of inorganic 
N (ammonium and nitrate) were negligible compared 
to total N, averaging 93 ± 7 and 12 ± 1 mg   kg−1, respec-
tively. Manure averaged 40.2 ± 0.9% ADF that contained 
an average concentration of 0.70 ± 0.02% N. Thus, N in 
the ADF fraction of manure accounted for an average 
0.28 ± 0.01% of manure dry weight or about 13% of the 
total N content of the manure.

We observed a strong main effect of treatment on 
ADF-N (P < 0.0001) but no statistically significant differ-
ences due to the added  NH4Cl (P ≥ 0.96) or evidence of 
a meaningful interaction (P > 0.14) (Fig.  3). The lowest 
concentrations of ADF-N were recorded in the samples 
treated with water, B0 and B3, but intermediate values 
were recorded in those treated with B1, CAF, B2, CAT 
and p-COUM. The highest concentrations of ADF-N 
were observed in samples treated with EGCG and FER.

Unlike experiment 1, average ADF-N in untreated sam-
ples (0.70 ± 0.02%) appeared more comparable to sam-
ples treated with water (0.73 ± 0.03%) (Fig. 2b, Dunnett’s 
P > 0.07) and was therefore appropriate for use as a base-
line. When compared to initial values in the untreated 
manure, ADF-N was not significantly affected by the 
 H2O, B0 and B3 treatments (Fig. 3) but was significantly 
increased by all other treatments. Percentage increases in 
ADF-N varied from 13.2 to 17.5% for the B1, CAF and 
B2 treatments, while the solutions of CAT and p-COUM 
increased ADF-N by 19.7 and 22.2%, respectively. Treat-
ment with EGCG or FER resulted in the greatest increase 
of ADF-N, 32.6 and 34.1%, respectively. The changes in 
ADF-N did not appear correlated to compound proper-
ties like pKa or  Kow (Table 2, Fig. 3). For example, the pKa 
for B0 and B3 were similar to that FER but lower than 
EGCG. Additionally, while the  Kow for B0 was higher 
than either EGCG or FER, the  Kow for B3 was lower.

Discussion
The composition of manure produced by the mixed 
ration (Table  3), was within the typical range of values 
for cattle (Van Kessel and Reeves 2002; Ward, 2018) and 
contained comparable concentrations of N as manure 
produced by a diet of alfalfa hay with twice as much 
crude protein (Halvorson et al. 2020). The concentration 
of manure ADF was close to values collected in a feedlot 
by Ward et al. (1978) of 39.7% but lower than values for 
dairy cows (Pennington et al. 2009).

Although significant effects of additions of different 
hydroxybenzoic acids and solution concentrations were 
detected in Experiment 1, these results did not entirely 
support our hypothesis that solutions of benzoic and 
cinnamic acid derivatives would increase sorption of 
soluble N in manure to the insoluble ADF fraction. 

Fig. 2 Manure ADF-N (%) for individual cows (open symbols) fed an 
oat-hay mixed ration for a Experiment 1 and b Experiment 2. Samples 
were analyzed after treatment with water or without treatment 
(sample handling only). Filled symbols indicate arithmetic mean 
values (n = 5 for a and n = 10 for b). Error bars indicate the standard 
error of the mean
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Unexpectedly, the results revealed considerable variabil-
ity in the concentration of manure ADF-N, even among 
animals fed the same ration. However, they also indicated 
manure ADF-N could be readily affected by some of the 
treatments.

The treatment effects on manure ADF-N observed were 
complex, and influenced by treatment compound, and 
concentration. The oat-hay ration resulted in manure in 
which ADF-N concentration was negatively related to the 
number of functional groups on hydroxybenzoic acids 
(compare B1-B3 in Fig. 1), but this pattern was observed 
only at the highest treatment concentration. At the lower 
concentrations, the relationship between ADF-N and OH 
functional groups did not show clear trends. Losses of 
some N from ADF with post treatment sample-handling 
suggests that it was not covalently held on the fiber but 
more likely linked by easily disrupted electrostatic inter-
actions, hydrogen bonds or hydrophobic forces.

In Experiment 2, concentrations of ADF-N were signif-
icantly increased by all treatments except B0 and B3 indi-
cating that most of the compounds immobilized some 
organic N species on manure fibers or perhaps acid insol-
uble ash. The lack of statistically significant change due to 
additions of ammonium chloride was somewhat surpris-
ing but in retrospect, the amount of N added to manure 
samples as  NH4Cl was very small (about 100  mg   kg−1 
manure) compared to the relatively high concentration 
of N already present in the manure (2.11%, Table 3) and 
probably unlikely to be detected.

Mechanisms responsible for increased ADF-N due to 
solutions of phenolic compounds need further elucida-
tion. No simple relationships were apparent between 
changes in ADF-N and compound pKa or  Kow suggesting 
that N in manure does not form complexes with manure 
ADF by simple electrostatic or hydrophobic interactions. 

Table 3 Manure  compositiona from a mixed oat hay  rationb

a pHw: manure pH determined with  H2O;  Ctot: Total C, (%);  Ntot: Total N, (%);  NH2O: Water-extractable N (%); ADF: Acid detergent fiber (%); ADF-N: the concentration of 
nitrogen in ADF (%);  Nadf: the product of ADF and ADF-N (%);  P2O5: Phosphorus, (%  P2O5);  K2O: Potassium, (%  K2O); S: Sulfur, (%); Ca: Calcium, (%); Mg: Magnesium, 
(%); Na: Sodium, (%); Zn: Zinc (ppm); Fe: Iron, (ppm); Mn: Manganese, (ppm); Cu: Copper, (ppm); B: Boron, (ppm). Values are corrected to a dry weight basis for manure 
dried at 55 °C for 72 h (9% moisture content). Mean and standard errors (SEM) are arithmetic
b Animals (n = 10), fed collectively, were supplied with a mixed daily ration composed of 9.53 kg oat hay, 907 g of corn, and 907 g of peas, animal −1  day−1

Cow pHw
Ctot N

tot NH2O ADF ADF‑N Nadf P205 K20 S Ca Mg Na Zn Fe Mn Cu B
% mg  kg−1

1 8.4 48.7 2.12 0.52 38.7 0.69 0.27 0.88 1.93 0.26 0.46 0.41 0.51 89.8 812.3 92.3 13.29 9.89

2 8.6 47.8 1.93 0.40 42.2 0.63 0.27 0.98 2.37 0.24 0.46 0.33 0.57 96.8 611.3 84.6 13.29 8.79

3 9.0 46.4 2.16 0.44 40.1 0.75 0.30 0.81 2.88 0.32 0.45 0.44 0.78 91.6 1178.2 107.6 14.50 12.31

4 6.1 48.6 2.24 0.36 33.0 0.78 0.26 1.18 1.33 0.23 0.47 0.45 0.21 90.0 515.1 89.9 13.73 7.14

5 7.8 48.7 2.13 0.44 39.4 0.69 0.27 0.75 1.29 0.24 0.51 0.41 0.37 69.7 906.4 105.5 12.64 8.79

6 8.1 49.1 2.04 0.43 41.9 0.68 0.29 0.58 0.88 0.22 0.39 0.37 0.51 142.2 706.0 119.1 16.70 7.69

7 8.3 47.4 2.08 0.52 39.9 0.69 0.28 0.91 1.65 0.26 0.40 0.42 0.78 113.8 715.5 103.2 14.94 10.22

8 8.3 48.9 2.10 0.53 41.9 0.67 0.28 0.80 1.47 0.24 0.48 0.41 0.46 67.4 476.6 88.7 12.53 8.90

9 8.8 46.4 2.26 0.56 41.5 0.81 0.34 0.55 1.82 0.23 0.39 0.33 0.45 82.0 1693.1 100.1 11.21 9.45

10 7.8 48.8 1.98 0.46 43.4 0.64 0.28 0.69 1.35 0.20 0.35 0.32 0.15 71.1 347.6 73.2 10.22 6.92

Avg. 8.1 48.08 2.11 0.47 40.2 0.70 0.28 0.81 1.70 0.25 0.44 0.39 0.48 91.4 796.2 96.4 13.3 9.00

SEM 0.3 0.3 0.03 0.02 0.9 0.02 0.01 0.06 0.18 0.01 0.02 0.02 0.07 7.2 124.5 4.2 0.6 0.51

CV% 10.0 2.1 5.0 13.6 7.3 8.3 8.1 23.0 34.4 13.2 11.9 12.2 43.0 24.9 49.3 13.7 13.9 17.7

Fig. 3 Manure ADF-N (%) for cows fed oat-hay mixed ration for 
Experiment 2. Bars show LSMEANS (n = 10), and error bars indicate 
the standard error calculated by the model. Abbreviations indicate 
water  (H2O), sodium benzoate (B0), sodium 4-hydroxybenzoic 
acid (B1), 3,4-dihydroxybenzoic acid (B2), 3,4,5-trihydroxybenzoic 
acid monohydrate (B3, gallic acid),  caffeic acid (CAF), p-coumaric 
acid (p-COUM), ferulic acid (FER), +(−) catechin (CAT), 
and epigallocatechin gallate (EGCG). Significant differences between 
treatments are denoted by letters. Significant differences from 
untreated manure (Dunnett’s P ≤ 0.05) are denoted with an asterisk
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We speculate that our observations might reasonably 
involve potential redox or binding effects associated with 
phenolic chemistry. Possible mechanisms could include 
ligand exchange, Coulombic forces, van der Waals forces, 
hydrophobic forces, hydrogen bonding, cation bridging, 
and chelation (Gmach et  al. 2019; Philippe and Schau-
mann 2014). Complexation and retention of dissolved 
organic matter is likely to be favored by the formation 
of bidentate complexes between two organic ligands in 
ortho position of an aromatic ring and a 2+ charge metal 
such as magnesium and calcium at the surface of oxides 
and hydroxides. Both are found lignocellulose-derived 
hydrophobic fractions and a feature of manure (Kaiser 
and Guggenberger 2000; Table  3; Philippe and Schau-
mann 2014; Slabbert 1992).

Sorption of organic N by ADF constituents, observed 
in experiment 2, could have been partially induced by 
the relatively low pH of some of the treatment solutions 
and their effects on the degree of ionization of soluble 
amino-containing compounds in manure. Organic N 
accounted for the vast majority of the total N in manure 
and contains many amino-containing compounds (de 
Moura Zanine and de Jesus Ferreira 2015). The relatively 
low pH (< 4) of B2, B3 p-COUM, CAF and FER treat-
ment solutions could favor a protonated state for some 
amino groups on organic N and facilitate their sorption 
on the negatively charged sites. The surface charge of 
cellulose and lignin would be expected to be negative in 
an aqueous medium due to their characteristic carboxyl 
and hydroxyl groups (Ribitsch et al. 1996). However, the 
impact of a low treatment solution pH needed to induce 
a protonated state for amino acids may have been nulli-
fied by the pH of the manure that averaged 8.1 (Table 3). 
Further, solution pH cannot be invoked to explain the 
significant increases in ADF-N observed for the B1 and 
CAT or EGCG, treatments with relatively high solution 
pH. Of those only EGCG, a tannin, would be expected 
to form complexes with proteins or other nitrogenous 
compounds (Adamczyk et al. 2011; Hagerman 2012) that 
might sorb to ADF.

Experiment 2 supports a hypothesis that organic N in 
excreted manure can complex with the cellulose, lignin 
or ash that comprises ADF upon exposure to benzoic and 
especially cinnamic acid derivatives. However, the exact 
nature of these complexes will be influenced by the con-
centration and composition of nitrogen in the manure 
and the phenolic compounds themselves, the reaction 
conditions such as temperature or pH, and characteris-
tics of the ADF that might vary with diet or with the indi-
vidual animal. Similarly, crop residues or organic matter 
may interact directly with simple phenolic compounds in 
the soil and undergo reactions that could influence nutri-
ent cycling. Mineralization kinetics of manure nutrients 

may be impacted by increasing or decreasing the amount 
of N bound to manure fibers. Therefore, we recommend 
further studies to learn if such complexed N is, at least 
temporarily, sequestered and thus less available to plants, 
for microbial mineralization, volatilization or leaching.
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