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Abstract 

Background: Animal communities are vulnerable to agricultural practices. Intensive farming considerably reduces 
overall arthropod diversity, but not necessarily pest abundance. Natural control of herbivores in agroecosystems 
is accomplished by predators and parasitoids, but in intensified agricultural regimes, the chemical control used to 
reduce pest abundances also affects pests’ natural enemies. To achieve more sustainable agriculture, there is a need to 
better understand the susceptibility of predators to conventional management.

Methods: In order to quantify the arthropod diversity associated with different schemes of agricultural management 
of maize, we evaluated agricultural fields under two contrasting management regimens in Michoacán, México during 
the spring–summer cycle of 2011. Arthropod communities were evaluated in plots with conventional high‑input 
versus low‑input agriculture in two sites—one rainfed and one with irrigation. The experimental units consisted of 
twelve 1 ha agricultural plots. To sample arthropods, we used 9 pitfall traps per agricultural plot.

Results: During the sampling period, we detected a total of 14,315 arthropods belonging to 12 Orders and 253 
morphospecies. Arthropod community composition was significantly different between the sites, and in the rain‑fed 
site, we also found differences between management practices. Predators, particularly ants, were more abundant in 
low‑input sites. Herbivory levels were similar in all fields, with an average of 18% of leaf area lost per plant.

Conclusions: Our results suggest that conventional farming is not reducing herbivore abundances or damage 
inflicted to plants, but is affecting arthropod predators. We discuss repercussions for sustainable agriculture.
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 Introduction
Arthropods were assumed to be resistant to anthro-
pogenic changes and to have large populations world-
wide. However, there is now strong documentation of 
arthropods’ decline around the world. Dirzo et al. (2014) 
described a decrease in the abundance of certain insect 

groups. More recently, Hallmann et al. (2017) reported a 
striking 75% decline in flying insects in natural areas of 
Germany, and in a global review, van Klink et al. (2020) 
documented a declining trend for terrestrial arthropods 
worldwide, highlighting a significant information gap 
from the tropics. Insect pollinator decline has received 
significant attention, given the decreased productivity 
of many agricultural crops as well as the expansion of 
colony collapse disorder in bees (Potts et al. 2010). Dung 
beetles, another important insect group related to pro-
ductive systems, have also been declining (Numa et  al. 
2020). Insect predator and parasitoid communities’ con-
servation status have not been evaluated, even though 
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they are crucial for biocontrol in agriculture and forestry 
(Desneux et al., 2007). On the other hand some herbivo-
rous species (aphids, caterpillars and grasshoppers) with 
generalist habits that behave as pests in agricultural and 
forestry systems are increasing in abundance (Lehmann 
et al. 2000).

Since the green revolution, there has been a dramatic 
increase in the use of external inputs for agriculture (FAO 
2003). Fertilizers, herbicides and pesticides in particu-
lar are used without considerations for health or envi-
ronmental issues or for the particularities of each field 
(Akanksha et al. 2020). Therefore, the amounts of chemi-
cal inputs actually used in agricultural fields are often far 
above the recommended doses (Bejarano 2017). In recent 
years in Mexico, approximately 3,000 tons of active 
ingredients per year have been used to combat the fall 
armyworm (Spodoptera frugiperda Smith; Blanco et  al. 
2014). The overuse of pesticides has led to the develop-
ment of pest resistance and the extermination of arthro-
pod communities, killing not only insect pests but also 
many beneficial insects such as predators, parasitoids 
and detritivores (animals that contribute to the decom-
position of dead organic material; Attwood et  al. 2008; 
Bengsston et al. 2005; Flores-Gutiérrez et al. 2020; Theil-
ing and Croft 1988). This can result in the loss of the eco-
system services that native predators and parasitoids may 
provide (Chapin et  al. 2000; Desneux et  al. 2007; Isaacs 
et al. 2009; Losey and Vaughan 2006; Zhang et al. 2007).

Mexico has a long tradition of maize agriculture. For 
centuries, small-scale farmers in Mexico have developed 
local maize landraces, with 41–65 landraces recognized 
today (Kato et al. 2009). Until the mid twentieth century, 
maize was mainly cultivated in the milpa system. This is 
a highly diversified system that involves high intra- and 
inter-species diversity and a profound local knowledge 
of the use of all the species of plants and animals found 
there to regulate pests and maintain soil health and nutri-
tion, as well as for medical uses and food security (Mar-
tínez et  al. 2020; Rodríguez-Robayo et  al. 2020).  Today, 
maize produced in the context of small farms, for exam-
ple, covers not only subsistence needs, but also produces 
a surplus for local and regional animal and human needs 
(Bellón et  al. 2021).  However, beginning in the second 
half of the twentieth  century, Mexico’s state policies 
promoted the green revolution’s technological schemes, 
including monoculture, mechanization, commercial vari-
eties and synthetic fertilizers and pesticides (Aguilar et al. 
2003). Traditional agricultural practices like the milpa 
are now facing challenges such as a lack of younger gen-
erations incorporating into agriculture, low commercial 
value of milpa products, and state and agroindustry pres-
sure on small farmers to consume synthetic agrochemi-
cals (Ebel et al., 2017; Orozco and Astier 2021).

Most of the beneficial aspects of traditional low-input 
maize cultivation are not well appreciated, and there 
are few studies that directly compare traditional versus 
conventional management. Therefore, the aim of this 
investigation was to evaluate the effects of conventional 
versus low-input agriculture on arthropod communities 
under two irrigation systems in Michoacán, México. Our 
hypothesis was that arthropod diversity would be higher 
in low-input rainfed agricultural plots.

Methods
Study sites
This study was performed during the 2011 agricul-
tural cycle in central Michoacán, Mexico. We chose two 
localities with different maize cultivation practices; one 
depended on rainfall only (R), and the other used irriga-
tion (I). In each locality we chose plots under low (LI) 
and high-input (HI) management. The rainfed only local-
ity was in Cherán (19° 41’ N and 101° 57’ W) at 2400 m 
asl, with temperatures that range between 6–26°C with 
1000  mm annual precipitation. The irrigated locality 
was in Álvaro Obregón (19° 48’ N, 101° 02’ W) at 1800m 
asl with 918 mm annual precipitation and temperatures 
between 12 and 27° C (INEGI 2008).

In each locality, we located six 1 ha. maize fields—three 
managed with conventional high-input management (HI; 
chemical fertilization, herbicide, and insecticide applica-
tions) and three with low-input management (LI; green 
manure and composted animal manure for fertiliza-
tion and manual weed removal, Table 1  ). Thus, in total 
we had twelve plots (six per locality). Plots were sepa-
rated by at least 500  m in each locality, and the farm-
ers had followed the same management strategy for at 
least three consecutive years in the selected plots. After 
maize harvest, five composite soil samples were collected 
(25 cm depth) from all plots. Soil samples were sieved at 
2  mm and air-dried until constant air-dried weight was 
achieved. We characterized soil texture and determined 
phosphorous content determined following the Olsen 
and Dean (1965) method, total Nitrogen content by the 
Kjeldahl method, and soil organic matter using the Walk-
ley  and Black method (1934) and the Cation Exchange 
Capacity following SEMARNAT (2002).

Arthropod and maize sampling
In each maize field, we sampled arthropod diversity three 
times during the agricultural cycle in July, August and 
September 2011. We used nine pitfall traps located in the 
center of each plot, arranged in three lines separated by 
3 m, as recommended by Duelli et al. (1999). Pitfall traps 
consisted of buried 250  mL plastic cups half filled with 
soapy water and 10 ml of ethanol. To prevent the water 
from evaporating and rainfall from accumulating, the 
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cups were covered with plastic plates supported on metal 
legs 3 cm above the rim of the cup. Pitfall traps were left 
open for 96  h in each sampling period. The arthropods 
collected were sorted and identified in the laboratory 
using taxonomic keys and regional arthropod guides 
(Borror et al. 1989; White and Peterson 1998; Eaton and 
Kaufman 2007). We identified all taxa as morphospe-
cies to the highest degree of detail possible, a technique 
known as “taxonomic sufficiency” (Ellis 1985) or “lowest 
practical taxonomic level” (LPT) (e.g., Hanula et al. 2009). 
A morphospecies can be defined as a group of biological 
organisms whose members differ from all other groups in 
some aspect of their form and structure, or species that 
can be distinguished from other species by their external 
morphology (Hale et al. 2005). We also assigned a trophic 
guild for each morphospecies, considering the Order or 
Family to which they belonged using Insect identifica-
tion guides (Borror et al. 1989; White and Peterson 1998; 
Eaton and Kaufman 2007) and the Naturalista (https:// 
www. natur alista. mx) and Enciclovida (https:// encic lov-
ida. mx) web pages. When a morphospecies belonged to 
a Family where several trophic guilds have been reported, 
the guild was defined as “Other” and was not considered 
for the statistical analysis.

Since we were interested in linking agricultural prac-
tices with arthropod diversity and maize production, 
we measured cumulative herbivore damage to maize 
in October 2011. We quantified herbivore damage on 
the fourth developed leaf from the top of 20 plants per 
maize field using a 10 × 10 cm transparent acetate with a 
1 × 1 cm grid, assessing the percent leaf area damaged as 
the number of grid squares presenting some damage. We 

also estimated maize production by collecting 20 ears of 
corn per maize field and measuring the dry weight of 100 
grains following Pérez- de-la-Cerda et al. (2007).

Statistical analyses
We pooled all of the arthropod data from different sam-
pling periods per plot. Total arthropod diversity per 
maize field was calculated via the effective number of 
species using the coverage-based integrations of rarefac-
tion and extrapolation of Hill numbers. This method has 
been recommended as the diversity measure of choice to 
compare species diversity across multiple assemblages 
that differ in sample size (Ellison 2010; Chao et al. 2014; 
Hsieh et al. 2016). We assessed the more widely used Hill 
numbers, species richness (which does not consider spe-
cies abundance), Shannon diversity (which counts spe-
cies in proportion to their abundances, thus assessing 
the effective number of common species) and Simpson 
diversity (which discounts all but the dominant spe-
cies; Chao et  al. 2014; Hsieh et  al. 2016). To calculate 
these indices for each maize plot, species abundances 
were pooled for the three sampled periods per plot. We 
used the R package iNEXT (R Development Core Team 
2008) to compute rarefaction and extrapolation sampling 
curves (Hsieh et al. 2016).

Using the calculated Hill numbers and different abun-
dances, we analyzed the effect of management type and 
site on arthropod community attributes using nested 
ANOVAs. The response variables were species richness, 
Shannon diversity, Simpson diversity, total abundance, 
morphospecies abundance, Order abundance and guild 
abundance. The explanatory variables were management 

Table 1 Characterization of plot management including external inputs and soil characteristics

The following soil characteristics were measured at the National Soil Fertility and Vegetable Nutrition Laboratory: texture (sand, clay and silt), pH, organic matter 
(% Walkley–Black), total nitrogen (%), phosphorus (Olsen ppm), and cation exchange capacity (CEC). We sampled 12 plots in total, sample size N = 3 per treatment 
combination

Inputs/soil characteristics Cherán (Rainfed) Alvaro Obregón (Irrigated)

Low input Conventional Low input Conventional

Herbicide X X

Insecticide X X

Fertilizer X X

Green manure and animal compost X X

Machinery Animal traction Animal traction Tractor Tractor

pH 5.97 ± 0.07 6.17 ± 0.08 7.61 ± 0.18 7.52 ± 0.09

Organic matter (%) 3.4 ± 1.4 2.55 ± 0.53 3.06 ± 0.52 2.73 ± 0.02

N (%) 0.1 ± 0.02 0.2 ± 0.07 0.15 ± 0.02 0.12 ± 0.003

P Olsen ppm 5.7 ± 1.2 7 ± 0.6 20 ± 6.53 30.7 ± 7.2

CEC 18.5 ± 6.6 22.3 ± 5.84 33.65 ± 11.5 46.97 ± 0.68

Texture Clay Clay Clay Loam Clay Loam

https://www.naturalista.mx
https://www.naturalista.mx
https://enciclovida.mx
https://enciclovida.mx
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(low-input or high-input) nested within site (irrigated or 
rainfed). Herbivory and maize production per plot were 
also analyzed using nested ANOVAs. Abundances and 
maize production were log-transformed to comply with 
ANOVA assumptions.

Similarities in arthropod composition per maize field 
were analyzed using non-metric dimensional scale 
analyses (NMDS), with morphospecies abundance per 
plot. We calculated a Bray–Curtis dissimilarity matrix 
between plots. This ordination method is recommended 
since it can detect gradients without assuming linear 
relationships between variables (Quinn and Keough 
2002) and produces an ordination based on a distance or 
dissimilarity matrix. We used the metaMDS and adonis 
functions from the vegan package for R (R Development 
Core Team 2008). To obtain a probabilistic statement 
of statistical differences in the community composi-
tion across the sampling sites, we used a permutational 
non-parametric multivariate analysis of variance (PER-
MANOVA, Anderson 2001; McArdle and Anderson 
2004) using the Bray–Curtis distance metric. This test 
allows the evaluation of the null hypothesis that groups 
(in this case, management types) do not differ in their 
species compositions. First, F statistics are recalculated 
after a random shuffling of the labels on the rows that 
identify them as belonging to a particular group. This is 
repeated for all possible re-orderings of the rows relative 
to the labels, to create a distribution of pseudo F values, 
which is then used to compare the F value calculated 
with the original ordering of the data, yielding a P value 
to test the null hypothesis (Anderson 2001).

All statistical analyses were performed in the R envi-
ronment (R Development Core Team 2008).

Results
Arthropod abundance and diversity
We collected a total of 14,315 individual arthropods 
belonging to 5 Classes (Arachnida, Malacostraca, 
Insecta, Diplopoda and Myriapoda), 12 Orders, 42 Fami-
lies and 204 morphospecies (Additional file 1: Table S1). 
The Orders with the most morphospecies were Coleop-
tera (77), Diptera (31), Araneae (28), Hemiptera (36) 
and Hymenoptera (16). The arthropod abundance was 
highest for Coleoptera (3870 individuals), Diptera (3775 
individuals), Hymenoptera (1841), and Collembola (1780 
individuals) which together accounted for 79% of all of 
the individuals collected during the study. Four very 
abundant species—one Collembola, one Coleopteran, 
one Dipteran and one Hymenopteran—accounted for 
39% of all individuals (1780, 1463, 1424 and 904 individu-
als respectively). We also trapped one vertebrate in one 
of the sampling periods, which was identified as the rat 
Oryzomys couesi (Alston, 1877) (Fig. 1).

The most abundant insects considered to be pests 
were Nicentrus testaceipes (Coleoptera), Macrodactylus 
sp. (Coleoptera), Diabrotica sp. (Coleoptera), Dalbulus 
maidis (Hemiptera), Rhopalosiphum maidis (Hemiptera), 
Gryllus rubens (Orthoptera) and Spodoptera frugiperda 
(Lepidoptera). The most abundant predators were Forfic-
ula sp. (Dermaptera), Orius sp. (Hemiptera), Calosoma 
sp. (Coleoptera) and four species of Formicidae.

Total abundance was highly variable among plots. On 
average there were 999.5 ± 373.3 arthropods/plot in high-
input plots and 1386.3 ± 373 arthropods in low-input 
plots; there was no significant difference in abundance 
between management types (Low-input vs. High- input: 
 F(1,8) = 2.76, p = 0.13) or sites within each management 
type (Rainfed vs. Irrigated:  F(1,2) = 9.67, p = 0.09, Fig.  2), 
although low-input irrigated plots tended to have higher 
abundances. Similarly, the diversity estimators did not 
show differences between management types or sites 
either (Richness: management:  F(1,8) = 2.25, p = 0.17, site 
 F(1,2) = 0.2, p = 0.7, Shannon est: management  F(1,8) = 0.3, 
p = 0.6 and site:  F(1,2) = 0.09, p = 0.78, Simpson est: man-
agement  F(1,8) = 0.001, p = 0.99 and management/site: 
 F(1,2) = 0.0001, p = 0.99, respectively). The abundance of 
different arthropod Orders per plot was similar between 
sites and management types, except for Hymenop-
tera, which was more abundant in the low input plots 
(Table 2).

Arthropod community composition and trophic guilds
Arthropod community composition was very similar 
among plots in one locality, the rainfed site (R local-
ity, Cherán, Fig. 3). At the site with irrigation (I) (Alvaro 
Obregón), however, low-input plots were strongly signifi-
cantly different from high-input plots (PERMANOVA: 
 r2 = 0.9532 p = 0.001). This analysis shows that there are 
differences between the centroids.

The analysis of arthropod guilds showed that mor-
phospecies that could be categorized as predators or 
herbivores from the literature were more abundant in 
low-input plots  (F(1,8) = 7.74, p = 0.02 and  F(1,8) = 6.39, 
p = 0.03, respectively, Fig.  4). For herbivores, this dif-
ference was more pronounced in irrigation plots, while 
detritivores were particularly variable between plots, 
with no apparent differences between management types 
 (F(1,8) = 4.33, p = 0.07). There were no differences in guild 
abundances between sites (p > 0.05).

Herbivory and maize production
Maize leaf damage was 10.24 ± 6.4% on average in all 
management types; there were no significant differ-
ences between management types or sites (manage-
ment: HI = 9.85 ± 4.6% damage and LI = 8.27 ± 3.06% 
damage, F(1,8) = 2.67, p = 0.11; and sites: R = 9.8 ± 1.95% 
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damage and I = 10.24 ± 6.43% damage, F(1,2) = 1.13, 
p = 0.29). Maize production estimated as the dry weight 
of 100 grains per plot did not differ between manage-
ment types or sites, with an overall average of 26 ± 8.6 g 
/100grains (management: HI = 29.2 ± 5.5  g /100grains 
and LI = 22.7 ± 10.7  g /100grains, F(1,8) = 2.42, p = 0.15; 
and sites: R = 29.3 ± 7.2 g /100grains and I = 24.7 ± 8.8 g 
/100grains, F(1,2) = 1.13, p = 0.29).

Discussion
This investigation found that agricultural maize manage-
ment practices have some significant effects on arthro-
pod communities. In particular, it was evident that 
high-input management involving the frequent use of 
chemical inputs (insecticides, herbicides and fertilizer) 
had a negative effect upon Hymenoptera (mainly ants) 
and therefore a negative effect on predators.

Most maize agriculture in Mexico is now strongly 
dependent on external inputs (Hernández-Antonio and 
Hansen 2011). However, these changes in management 
practices do not necessarily translate into higher yields 
and economic profits. The application of external inputs 

without technical guidance can cause pest resistance, 
soil depletion, increase of herbivore populations due to 
lack of land rest, and other detrimental effects (Arnés 
et  al. 2013; León-García et  al. 2012). In our study case, 
herbivores and predators showed higher abundances in 
low-input plots. On average, predators were twice and 
three times as abundant in low-input plots compared 
with high-input ones in the rainfed and irrigated plots, 
respectively. This pattern suggests that chemical insec-
ticides are not only affecting pest species, but also their 
predators. Other investigations have also found this pat-
tern; Letourneau and Goldstein (2001) found greater 
predator abundances on organic farms compared to 
farms under conventional management, and in a recent 
global synthesis, Lichtenberg et al. (2017) concluded that 
organic farming provides better conditions for predators. 
In another recent study, Rosas-Ramos et al. (2020) found 
that organic management of cherry orchards benefited 
parasitoids and pollinators, though not predators. When 
comparing organic versus high-input farming, it has been 
difficult to determine the effect of stopping insecticide 
and/or herbicide use for arthropod communities. Most 

Fig. 1 Map showing study sites in Cherán and Alvaro Obregón, Michoacán, Mexico
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studies have found that increasing plant diversity within 
agricultural plots by intercropping or using cover crops is 
beneficial for predators (Philpott et al. 2006; Geldenhuys 
et  al. 2021; Mhlanga et  al. 2020; Del Pedro et  al. 2020; 
Saenz Romo et al. 2019; Rivers et al. 2016; Otieno et al. 
2019). Also, increasing plant diversity along field mar-
gins has proven to benefit predator abundances in some 
sites (Mkenda et al. 2019, Rusch et al. 2016). One aspect 
that warrants further investigation that is highlighted in 
the study by Tschumi et  al. (2018) and Flores-Gutiérrez 

et al. (2020) and warrants further investigation is that the 
effect of seminatural habitats surrounding crops on the 
services or disservices of arthropods depends on the eco-
system type and region (e.g. dry versus wet forests).

In our study, ants were the predators that benefited the 
most from low-input agriculture; at the irrigated site they 
increased 100-fold, while in the rain-fed they increased 
twofold. This result is very significant, since ants have 
been shown to be important pest controllers for sev-
eral (Thurman et al 2019; Philpott and Armbrecht 2006) 

Fig. 2 Arthropod diversity indices in different management regime and site combinations, IHI (Irrigated High Input), ILI(Irrigated Low Input), RHI 
(Rainfed High Input), RLI (Rainfed Low Input). Shown in red: Species Richness, green: Shannon diversity and blue: Simpson diversity

Table 2 Nested ANOVA of the effect of site and management on different arthropod orders, showing the degrees of freedom (d.f.), F 
and P values

Significant effects are highlighted in italics

Orders with < 50 individuals were not analyzed

Order Site Management

d.f F P d.f F P

Araneae 1,2 0.42 0.58 1,8 2.94 0.12

Coleoptera 1,2 0.42 0.58 1,8 2.94 0.12

Diptera 1,2 0.007 0.94 1,8 0.15 0.71

Hemiptera 1,2 0.54 0.53 1,8 3.72 0.09

Hymenoptera 1,2 0.42 0.58 1,8 29.5 0.0006

Orthoptera 1,2 1.57 0.33 1,8 3.61 0.09

Collembola 1,2 0.14 0.74 1,8 0.83 0.39

Spirobolida 1,2 0.02 0.91 1,8 1.1 0.32
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including maize agroecosystems (Perfecto 1991; Perfecto 
and Castiñeiras 1998). Ants are known to be important 
egg-predators (Wills et  al. 2019) and they can also prey 
on larvae, pupae and adult insects (Perfecto 1990, 1991). 
Other studies have also found that management affect 
ant community composition and predation effects, in 

particular maize fields sown surrounded by forested 
areas have shown to have higher ant predation rates than 
clear maize fields (Risch and Carroll 1982). In our study, 
in addition to avoiding the use of insecticides, low-input 
fields also have more diverse vegetation, which may have 
provided more prey for ants.

Insecticides were developed during the green revolu-
tion to control pest damage to crops (FAO 2003). Since 
then, insecticides are used heavily throughout the world 
with benefits to production but without consideration 
for insect diversity or other services provided by insects 
(Akanksha et  al. 2020, Dirzo et  al. 2014, Hallman et  al. 
2017; Klink et al. 2020). Insecticides currently have highly 
variable effects on crop production and pest reduction 
(Rosenheim 2021; Emery et al. 2021). In our study sites, 
high-input farmers cultivating in irrigated or rainfed 
regimes spend a considerable amount of money buying 
insecticides, which apparently does not translate into a 
considerable reduction of herbivores or herbivory lev-
els on plants (Arnés et  al. 2013), since herbivore dam-
age to plants was similar between management regimes 
(high-input vs. low-input), so the expense of insecticide 
did not translate into protection of plants from herbi-
vores. Furthermore, although we do not have an estimate 
of total maize production per plot, we found that maize 
grain weight was similar between treatments, suggesting 
that the differences on external inputs did not result in a 
strong increase in maize production. Similar results were 
found in papaya cultivation in western Mexico (Flores-
Gutiérrez et al. 2020) and in corn cultivated in northern 
California, USA (Clark et  al. 1998). Despite evidence to 

Fig. 3 Non‑multidimensional scaling analysis showing different 
plots from different sites and management practices. A clear cluster 
was formed with the plots from the rainfed‑Cherán site (Low and 
High input, RHI and RLI) while irrigated‑Alvaro Obregón showed two 
different communities depending on management regime (Low and 
High Input, LHI and ILI)

Fig. 4 Total arthropod abundance per functional guild (mean per plot) in four different management treatments: IHI (Irrigated High Input), ILO 
(Irrigated Low Input), RHI (Rainfed High Input), RLO (Rainfed Low Input)
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the contrary, conventional farmers often feel that it is too 
risky to stop using insecticide, so the transition towards 
more sustainable agriculture has to be gradual, and 
results from this type of investigation should be shared 
with farmers.

Another aspect to take into consideration is that her-
bivore impacts are normally considered to be directly 
and linearly related with plant productivity, but this not 
always the case (Perez-Alvarez et  al. 2018; Poveda et  al. 
2003, 2010). We need more studies looking into real her-
bivore population thresholds that affect crop production 
to allow sustainable pest management based on local 
data. In our study system, maize in low-input manage-
ment plots appears to cope with the levels of herbivory 
without a decrease in productivitt, suggesting some kind 
of compensation.

Conclusions
Agricultural management regime had a significant effect 
upon arthropod communities in both rainfed and irri-
gated maize farms. Given that arthropod species are 
experiencing significant declines worldwide, low-input 
management could contribute to conservation. The plots 
under conventional maize management at both irrigated 
and rain-fed sites used several costly external inputs, but 
did not have significantly reduced herbivores or maize 
damage, suggesting that alternative solutions would be 
able to control pest damage.
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